K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

a) ĐK : x khác 2/3 ; x khác 0

\(\frac{x+5}{3x-2}=\frac{A}{x\left(3x-2\right)}\)

\(\Leftrightarrow\frac{x\left(x+5\right)}{x\left(3x-2\right)}=\frac{A}{x\left(3x-2\right)}\)

\(\Leftrightarrow A=x^2+5x\)

b) \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)

\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\frac{2\left(2-x\right)}{\left(x+2\right)}\)

\(=\frac{-5}{2}\)

30 tháng 11 2019

1) ĐKXĐ: x \(\ne\)1; x \(\ne\)0

Ta có: A = \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6x}{x\left(x-1\right)}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{4x^2-3x+17+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{12}{x^2+x+1}\)

b) Ta có: B = \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)

B = \(\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)

B = \(\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x+3y\right)\left(x-3y\right)}\)

B = \(\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B =  \(\frac{x^2+6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{x+3y}{x\left(x-3y\right)}\)

30 tháng 11 2019

\(A=\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x\left(1-x\right)}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}-\frac{6x}{x\left(x-1\right)}\)

\(A=\frac{x\left(4x^2-3x+17\right)+x\left(x-1\right)\left(2x-1\right)-6x\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4x^3-3x^2+17x+x\left(2x^2-x-2x+1\right)-6x^3-6x^2-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{\left(4x^3+2x^3-6x^3\right)-3x^2-3x^3-6x^2+17x+x-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x^2+12x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\frac{-12}{x^2+x+1}\)

23 tháng 7 2018

ai đó giúp tôi giải bài này với

28 tháng 9 2019

ko ai thèm trả lời đâu cu

28 tháng 9 2019

a) \(4x^2-6x=2x\left(2x-3\right)\)

b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)

c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(5x+3\right)\left(x-y\right)\)

d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)

e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)

\(=5\left(1-3x\right)\left(x+3y\right)\)

f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)

\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)

17 tháng 6 2018

Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.

Bài 2: 

a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)

\(=4x^2+20x+25\)

b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)

\(=9x^2+24x+16\)

c/\(\left(3x+5y+\frac{1}{2}\right)^2\)

Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)

\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)

Bài 3:

a/ A= x2+10x+30

A= x2+2.5x+25+5

A= x2+2.5.x+52+5

A=(x+5)2+5

Ta có (x+5)2 luôn luôn > hoặc = 0

=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)

=> A luôn dương.

b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)

\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)

(Tương tự như câu A)

Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0

=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)

=> B luôn dương.

c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)

(Chứng minh tương tự câu a, b)

Chúc bạn học tốt!!

17 tháng 6 2018

mk giúp bạn bài  3 còn bài 1, 2 tự làm nha

a , A = x2  + 10x +30 

= (x2 + 2 . 5 . x +52 ) +5

= (x+5)2 + 5

Vì (x+5)2  >= 0 (luôn đúng)

=> (x+5)2 + 5  luôn luôn dương

30 tháng 6 2015

1. 

a) = (xy + \(\frac{1}{5}\)) (x2y2 - \(\frac{xy}{5}\)+ \(\frac{1}{25}\))

b) = (x + 5 - x + 5) [(x+5)2 + (x+5)(x-5) + (x-5)2] = 10 (x2 + 10x + 25 + x2 - 25 + x2 - 10x + 25) = 10 (3x2 +25)

c) = (6 - x + 6 + x) [(6-x)2 - (6-x)(6+x) + (6+x)2] = 12 (36 - 12x + x2 - 26 + x2 + 36 + 12x + x2) = 12 (3x2 + 36) = 12. 3(x2 + 12) = 36(x2 +12)

d) = (3x - 5)3

2. 

a) => (2x - 5x2)(2x + 5x2) = 0 ............. giải ra

b) => (x-4)2 = 0 => x - 4 = 0 => x= 4

c) => (x - 1)3 = 0 => x - 1 = 0 => x = 1

10 tháng 7 2018

Bài 1:

           \(A=x^2-6x+13=\left(x-3\right)^2+4\ge4\)

Vậy  \(Min\)\(A=4\)\(\Leftrightarrow\)\(x=3\)

        \(B=2x^2+8x=2\left(x^2+4x+4\right)-8=2\left(x+2\right)^2-8\ge-8\)

Vậy  \(Min\)\(B=-8\)\(\Leftrightarrow\)\(x=-2\)

        \(C=4x^2+20x=\left(2x+5\right)^2-25\ge-25\)

Vậy  \(Min\)\(C=-25\)\(\Leftrightarrow\)\(x=-\frac{5}{2}\)

Bài 3:

a)   \(x^2+12x+39=\left(x+6\right)^2+3>0\) 

b)   \(4x^2+4x+3=\left(2x+1\right)^2+2>0\)

13 tháng 4 2020

(x-2x+1)-4=0

= (x-1)2-4=0

=> (x-1)2=4

=> x=3