K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

\(A=\frac{3\left(x^2+x+1\right)+6x}{x^2+x+1}=3+\frac{6x}{x^2+x+1};\left(x-1\right)^2\ge0< =>x^2+x+1\ge3x;\)

=> \(A\le3+\frac{6x}{3x}=5\). Max A =5 khi x=1

\(B=\frac{7\left(x^2+x+2\right)+7-7x}{x^2+x+2}=7-\frac{7\left(x-1\right)}{x^2+x+2};\)\(\left(x-3\right)^2\ge0< =>x^2+x+2\ge7\left(x-1\right)\)

=> \(B\ge7-\frac{7\left(x-1\right)}{7\left(x-1\right)}=6\)MinB = 6 khi x =3

29 tháng 11 2017

Câu 1:

\(A=x^2-3x+9\\ =x^2-3x+\dfrac{9}{4}+\dfrac{27}{4}\\ =\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{27}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge0\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }A_{\left(Min\right)}=\dfrac{27}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)

\(B=9x^2-6x+2\\ =9x^2-6x+1+1\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \Rightarrow B=\left(3x-1\right)^2+1\ge1\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ Vậy\text{ }B_{\left(Min\right)}=1\text{ }khi\text{ }x=\dfrac{1}{3}\)

\(C=-x^2+2x+4\\ =-x^2+2x-1+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow-\left(x-1\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-1\right)^2+5\le5\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ \text{Vậy }C_{\left(Max\right)}=5\text{ }khi\text{ }x=1\)

\(D=-x^2+4x\\ =-x^2+4x-4+4\\ =-\left(x^2-4x+4\right)+4\\ =-\left(x-2\right)^2+4\\ \\ Do\text{ }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-2\right)^2+4\le4\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{Vậy }C_{\left(Max\right)}=4\text{ }khi\text{ }x=2\)

29 tháng 11 2017

Câu 2:

\(\text{Ta có : }x+y=2\\ \Rightarrow\left(x+y\right)^2=2^2\\ \Rightarrow x^2+2xy+y^2=4\\ Thay\text{ }x^2+y^2=10\text{ }vào\\ \Rightarrow2xy+10=4\\ \Rightarrow2xy=-6\\ \Rightarrow xy=-3\\ \text{Ta lại có : }x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ Thay\text{ }x^2+y^2=10;x+y=2;xy=-3\text{ }ta\text{ }được:\\ x^3+y^3=2\cdot\left(10+3\right)=26\)

Vậy \(x^3+y^3=26\text{ }tại\text{ }x+y=2;x^2+y^2=10\)

15 tháng 7 2021

a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)

<=> \(9x^2-9x+2=9x^2+6x+1\)

<=>  \(15x=1\) <=> \(x=\frac{1}{15}\)

b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)

<=> \(4x^2+3x-1=4x^2-12x+9\)

<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)

c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)

<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)

<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)

15 tháng 7 2021

d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)

<=> 16 - 9x2 = 12x - 9x2 - 3

<=> 12x = 19

<=> x = 19/12

e) x(x + 1)(x + 2)(x + 3) = 24

<=> (x2 + 3x)(x2 + 3x + 2) = 24

<=> (x2 + 3x)2  + 2(x2 + 3x) - 24 = 0

<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0

<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0

<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

g) (7x - 2)2 = (7x - 3)(7x + 2)

<=> 49x2 - 28x + 4 = 49x2 - 7x - 6

<=> 21x = 10 <=> x = 10/21

29 tháng 7 2019

\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)

Vậy \(A_{min}=-13\Leftrightarrow x=3\)

29 tháng 7 2019

\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

a: \(\Leftrightarrow9x^2-9x+2=9x^2+6x+1\)

=>-3x=-1

hay x=1/3

b: \(\Leftrightarrow4x^2+4x-x-1=4x^2-12x+9\)

=>3x-1=-12x+9

=>15x=10

hay x=2/3

c: \(\Leftrightarrow25x^2+10x+1=25x^2+25x-x-1=24x-1\)

=>10x-24x=-1-1

=>-14x=-2

hay x=1/7

d: \(\Leftrightarrow49x^2-28x+4=49x^2+14x-21x-6\)

=>-28x+4=-7x-6

=>-21x=-10

hay x=10/21

19 tháng 2 2018

a. \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)

\(\Leftrightarrow9x^2-9x+2=9x^2+6x+1\)

\(\Leftrightarrow-3x=-1\)

\(\Leftrightarrow x=3\)

19 tháng 2 2018

b.

\(\left(4x-1\right)\left(x+1\right)=\left(2x-4\right)^2\)

\(\Leftrightarrow4x^2+3x-1=4x^2-16x+16\)

\(\Leftrightarrow19x=17\)

\(\Leftrightarrow x=\dfrac{17}{19}\)