K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
21 tháng 4 2023
a: Xét tứ giác BDGC có
BD//GC
BC//GD
=>BDGC là hình bình hành
=>BD=GC
AD//GC
=>AD/CG=DE/EG
=>AD*EG=DE*CG
=>AD*EG=DE*DB
b: DE//CB
=>BD/BA=CE/CA
AB//CG
=>CG/AB=CH/HA
=>BD/BA=CH/HA
=>CE/CA=CH/HA=HE/CH
=>HC^2=HE*HA
20 tháng 3 2021
Sửa đề: DE//BC
a) Xét ΔABC có
D∈AB(gt)
E∈AC(gt)
DE//BC(gt)
Do đó: \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)(Hệ quả của Định lí ta lét)
\(\Leftrightarrow\dfrac{3}{5}=\dfrac{DE}{10}\)
hay DE=6(cm)
Vậy: DE=6cm
12 tháng 7 2023
a: Xét ΔACB vuông tại A và ΔCEG vuông tại C có
góc ACB=góc CEG
=>ΔACB đồng dạng với ΔCEG
b: Xét ΔEAD vuông tại A và ΔECG vuông tại C có
góc AED=góc CEG
=>ΔEAD đồng dạng với ΔECG
=>ED/EG=EA/EC=DA/DB
=>DA*EG=DB*DE
a: Xét ΔEDA và ΔEGC có
\(\widehat{EDA}=\widehat{EGC}\)(hai góc so le trong, AD//CG)
\(\widehat{DEA}=\widehat{GEC}\)(hai góc đối đỉnh)
Do đó: ΔEDA~ΔEGC
=>\(\dfrac{ED}{EG}=\dfrac{EA}{EC}\left(1\right)\)
Xét ΔABC có DE//BC
nên \(\dfrac{EA}{EC}=\dfrac{AD}{DB}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{EG}=\dfrac{AD}{DB}\)
=>\(ED\cdot DB=EG\cdot AD\)
b: Xét ΔHEG và ΔHCB có
\(\widehat{HEG}=\widehat{HCB}\)(hai góc so le trong, EG//BC)
\(\widehat{EHG}=\widehat{CHB}\)(hai góc đối đỉnh)
Do đó: ΔHEG~ΔHCB
=>\(\dfrac{HE}{HC}=\dfrac{EG}{CB}\)(3)
Xét ΔHGC và ΔHBA có
\(\widehat{HGC}=\widehat{HBA}\)(hai góc so le trong, AB//CG)
\(\widehat{GHC}=\widehat{BHA}\)(hai góc đối đỉnh)
Do đó: ΔHGC~ΔHBA
=>\(\dfrac{HC}{HA}=\dfrac{GC}{BA}\left(4\right)\)
Xét tứ giác BDGC có
BD//GC
DG//BC
Do đó:BDGC là hình bình hành
=>\(\widehat{DGC}=\widehat{DBC}\)
Xét ΔGEC và ΔBCA có
\(\widehat{GEC}=\widehat{BCA}\)(hai góc so le trong, EG//BC)
\(\widehat{EGC}=\widehat{CBA}\)(cmt)
Do đó: ΔGEC~ΔBCA
=>\(\dfrac{EG}{BC}=\dfrac{GC}{BA}\left(5\right)\)
Từ (3),(4),(5) suy ra \(\dfrac{HC}{HA}=\dfrac{HE}{HC}\)
=>\(HC^2=HE\cdot HA\)