K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2 :

1) \(x^2+6xy+5y^2-5y-x=x^2-x+xy+5y^2-5y+5xy\)

\(=x\left(x-1+y\right)+5y\left(y-1+x\right)=\left(x+y-1\right)\left(x+5y\right)\)

Ca ca câu này mụi lm đc òi, lm hộ mụi mấy cái khác ik

1 tháng 2 2018

2, a^3-3ab^2 = 5

<=> (a^3-3ab^2)^2 = 25

<=> a^6-6a^4b^2+9a^2b^4 = 25

b^3-3a^2b=10

<=> (b^3-3a^2b)^2 = 100

<=> b^6-6a^2b^4+9a^4b^2 = 100

=> 100+25 = a^6-6a^4b^2+9a^2b^4+b^6+6a^2b^4+9a^4b^2

<=> 125 = a^6+3a^4b^2+3a^3b^4+b^6 = (a^2+b^2)^3

<=> a^2+b^2 = 5

Khi đó : S = 2016.(a^2+b^2) = 2016.5 = 10080

Tk mk nha

1 tháng 2 2018

1) \(x^2+6xy+5y^2-5y-x=\left(x^2+xy-x\right)+\left(5xy+5y^2-5y\right)\)

\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)

\(=\left(x+5y\right)\left(x+y-1\right)\)

2) Ta có : \(a^3-3ab^2-5\Rightarrow\left(a^3-3ab^2\right)^2=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

và \(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2+9a^4b^2=100\)

\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)

Hay \(125=\left(a^2+b^2\right)^2\Rightarrow a^2+b^2=5\)

Nên \(S=2016\left(a^2+b^2\right)=2016.5=10080\)

4 tháng 5 2018

Câu hỏi của Chien - Toán lớp 8 - Học toán với OnlineMath

đấy

15 tháng 1 2018

1) \(x^2+6xy+5y^2-5y-x\)

\(=\left(x^2-xy+x\right)+\left(5xy+5y^2-5y\right)\)

\(=x\left(x+y-1\right)+5y\left(x+y-1\right)\)

\(\left(x+5y\right)\left(x+y-1\right)\)

2) Ta có : \(a^3-3ab^2=5\)

\(\Rightarrow\)\(\left(a^3-3ab^2\right)^2-100=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)

Và \(b^3-3a^2b=10\)

\(\Rightarrow\)\(\left(b^3-3a^2b\right)^2=100\Rightarrow b^6-6b^4a^2-9a^4b^2=100\)

\(\Rightarrow\)\(125=a^6+b^6+3a^2b^4+3a^4b^2\)

Hoặc \(125=\left(a^2+b^2\right)^3\Rightarrow a^2+b^2=5\)

Do đó : \(S=2016\left(a^2+b^2\right)=2016.5=10080\)

ai lm hộ mk vs

b1: 

ĐKXĐ: \(x\ne0;x\ne\pm2\)

Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)

\(=\frac{12\left(x-1\right)}{x-2}\)

Vậy ....

Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)

Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0

16 tháng 2 2020

1, x^2 + 6xy + 5y^2 - 5y - x 

= x^2 + xy - x + 5xy + 5y^2 - 5y

= x(x + y - 1) + 5y(x + y - 1)

= (x + 5y)(x + y - 1

2, 

a^3 - 3ab^2 = 5

<=> (a^3 - 3ab^2)^2 = 25

<=> a^6 - 6a^4b^2 + 9a^2b^4 = 25      (1)

b^3 - 3a^2b = 10

<=> (b^3 - 3a^2b)^2 = 100

<=> b^6 - 6b^4a^2 + 9a^4b^2 = 100     (2)

(1) + (2) = a^6 - 6a^4b^2 + 9a^2b^4  + b^6 - 6b^4a^2 + 9a^4b^2 = 25 + 100

<=> a^6 + 3a^4b^2 + 3a^2b^4 + b^6 = 125

<=> (a^2 + b^2)^3 = 125

<=> a^2 + b^2 = 5 

<=> 2016(a^2 + b^2) = 5.2016

<=> 2016a^2 + 2016b^2 = 10080

11 tháng 12 2018

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

21 tháng 12 2018

\(5x^3-5x=5x\left(x^2-1\right)\)

\(3x^2+5x-3xy-5x=x\left(3x+5\right)-x\left(3y+5\right)=x\left(3x-3y\right)=3x\left(x-y\right)\)

21 tháng 12 2018

\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)\)

\(=\frac{1}{5}x^2y^2\left(15xy-5+3x\right)\)

\(=\frac{1}{5}\left(x.y\right)^2.\left(15xy-5+3x\right)\)

\(=\frac{1}{5}\left(15x^3y^3-5x^2y^2+3x^3y^2\right)\)

22 tháng 2 2018

đề bạn ra hình như sai thì phải 

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi