K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

21 tháng 7 2018

2

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)

ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1

=> A ≥ 1

=> Min A =1 khi 1/3 ≤ x ≤ 2/3

Bài 1: 

a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)

Do đó: A>=0

19 tháng 12 2017

3) Gợi ý: Thay 1=xy+yz+xz

\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\dfrac{\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}{x^2+xy+yz+xz}}=x\sqrt{\dfrac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=x\left(y+z\right)\)

Tương tự rồi cộng vào

19 tháng 12 2017

@Ribi Nkok Ngok

2 tháng 10 2017

1.

\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\sqrt{\dfrac{\left(\sqrt{2x-3}+1\right)^2}{\left(\sqrt{2x+3}-1\right)^2}}\end{matrix}\right.\)\(\Leftrightarrow\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{2x-3}+1}{\sqrt{2x+3}-1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\left(\sqrt{2x-3}+1\right)\left(\sqrt{2x+3}+1\right)}{2\left(x+1\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{4x^2-9}+\sqrt{2x-3}+\sqrt{2x+3}+1}{2\left(x+1\right)}\end{matrix}\right.\)

hết tối giải rồi

12 tháng 10 2022

a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)

b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

24 tháng 6 2018

Câu 1:

\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\\ \Leftrightarrow2\sqrt{x-a}+2\sqrt{y-b}+2\sqrt{z-c}=x+y+z\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}=0\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}+3-a-b-c=0\\ \Leftrightarrow\left[\left(x-a\right)-2\sqrt{x-a}+1\right]+\left[\left(y-b\right)-2\sqrt{y-b}+1\right]+\left[\left(z-c\right)-2\sqrt{z-c}+1\right]=0\\ \Leftrightarrow\left(\sqrt{x-a}-1\right)^2+\left(\sqrt{y-b}-1\right)^2+\left(\sqrt{z-c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}-1=0\\\sqrt{y-b}-1=0\\\sqrt{z-c}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}=1\\\sqrt{y-b}=1\\\sqrt{z-c}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-a=1\\y-b=1\\z-c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a+1\\y=b+1\\z=c+1\end{matrix}\right.\)Vậy \(\left\{x;y;z\right\}=\left\{a+1;b+1;c+1\right\}\)

24 tháng 6 2018

Câu 2:

\(\text{ a) Ta có }:\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\\ =\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(1\right)\)

\(\text{Lại có: }\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\\ =\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow2\left(\sqrt{n+1}-n\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

b) Áp dụng bất đảng thức ở câu a:

\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\\ >2\left(\sqrt{101}-\sqrt{100}\right)+...+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{100}+...+\sqrt{4}-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=2\left(10-1\right)=18\left(3\right)\)

\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{99}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{1}-\sqrt{0}\right)\\ =2\left(\sqrt{100}-\sqrt{99}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}\right)\\ =2\cdot\sqrt{100}=2\cdot10=20\left(4\right)\)

Từ \(\left(3\right)\)\(\left(4\right)\Rightarrow18< S< 20\)