Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 1:
Vì AD // BC => Góc A cộng góc B bằng 180 độ. Mà góc A trừ góc B bằng 20 độ.
=> Góc A = (180 + 20) : 2 = 100 độ
Góc B = 80 độ.
Vì AD // BC => Góc C cộng góc D bằng 180 độ .
Mà góc D bằng hai lần góc C => 3C = 180 độ
=> Góc C bằng 60 độ. Góc D bằng 120 độ.
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp
a,{ˆA1=ˆA2(t/c.phân.giác)ˆA2=ˆK1(so.le.trong.do.AB//CD)
⇒ˆA1=ˆK1⇒ΔADK.cân.tại.D⇒AD=KD
b,{AD+BC=CDAD=DK⇒DK+BC=CD
Mà DK+KC=CD⇒KC=BC
⇒ΔBKC.cân.tại.C
c,ΔBKC.cân.tại.C⇒ˆK2=ˆB2Mà.ˆK2=ˆB1(so.le.trong.vì.AB//CK)
⇒ˆB2=ˆB1
⇒BK.là.phân.giác.ˆAB