Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng AB có dạng y =ax+b(d)
(d) đi qua A(1;1)=> x =1 ; y=1 thay vào (d)
=> a+b =1 (1)
(d) đi qua B( 2 ;-1 )
=> x = 2 ; y = -1 thay vào (d)
=> 2a +b = -1 (2)
Từ (1) (2) => \(\hept{\begin{cases}a+b=1\\2a+b=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a+b-2a-b=2\\a+b=1\end{cases}\Leftrightarrow\hept{\begin{cases}-a=2\\b=1-a\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-2\\b=3\end{cases}}}\)
Vậy phương trình đường thẳng AB là y = -2a +3
a/ Gọi pt AB có dạng \(y=ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}1=a+b\\-1=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\) \(\Rightarrow y=-2x+3\)
b/ Do đường thẳng đã cho song song AB \(\Rightarrow m^2-3m=-2\)
\(\Rightarrow m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\) (1)
Do đường thẳng qua C nên: \(2=m^2-2m+2\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\) (2)
(1); (2) \(\Rightarrow m=2\)
c/ Để đường thẳng đi qua gốc tọa độ
\(\Rightarrow m^2-2m+1=0\Rightarrow\left(m-1\right)^2=0\Rightarrow m=1\)
a: Gọi phương trình đường thẳng AB là y=ax+b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=2\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1-a=1-\left(-2\right)=3\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}a+b=3\\-3a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}a=3\\2a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}a=-2\\2a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}a.3=-1\\-2a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{1}{3}\end{matrix}\right.\)
e/ \(\left\{{}\begin{matrix}a=-2\\a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}a+b=3\\-3a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}a=3\\2a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}a=-2\\2a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}a.3=-1\\-2a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{1}{3}\end{matrix}\right.\)
e/ \(\left\{{}\begin{matrix}a=-2\\a.1+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
Gọi ptdt : y=ax +b ( d1)
+Vì : d1 // (Δ) : y = 4x + 2 => a=4 và b khác 2 => ptdt: y=4x+b (d1)
+Vì : d1 đi qua M ( -2;2) nên thay x=-2, y=2 vào d1 ta có:
2= 4.-2+b <=> b-8=2 <=> b=10 (t/m b khác 2)
Vậy ptdt cần tìm là : y=4x+ 10
a/ Gọi pt đường thẳng có dạng \(y=ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\) \(\Rightarrow y=-2x+3\)
b/ Do đường thẳng d đi qua C và song song AB nên:
\(\left\{{}\begin{matrix}\left(m^2-3m\right).0+m^2-2m+2=2\\m^2-3m=-2\\m^2-2m+2\ne3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-2m=0\\m^2-3m+2=0\\m^2-2m-1\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)