Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
ĐKXĐ: \(\left|x-2\right|-1\ne0\)
\(\Rightarrow\left|x-2\right|\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
Câu 3:
a: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
\(\widehat{EBF}\) chung
Do đó: ΔBEF~ΔBAC
b: Xét ΔEDC vuông tại D và ΔEBF vuông tại E có
\(\widehat{EDC}=\widehat{EBF}\left(=90^0-\widehat{ACB}\right)\)
Do đó: ΔEDC~ΔEBF
=>\(\dfrac{ED}{EB}=\dfrac{EC}{EF}\)
=>\(ED\cdot EF=EB\cdot EC\)
Câu 1:
a:
\(A=\dfrac{x^2-9}{x-3}=\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x+3\)
Thay x=4 vào A, ta được:
A=4+3=7
Thay x=4 vào B, ta được:
\(B=\dfrac{3}{4-3}+\dfrac{2}{4+3}+\dfrac{4^2-5\cdot4-3}{4^2-9}\)
\(=3+\dfrac{2}{7}+\dfrac{-7}{7}=3+\dfrac{2}{7}-1=2+\dfrac{2}{7}=\dfrac{16}{7}\)
b: \(B=\dfrac{3}{x-3}+\dfrac{2}{x+3}+\dfrac{x^2-5x-3}{x^2-9}\)
\(=\dfrac{3}{x-3}+\dfrac{2}{x+3}+\dfrac{x^2-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3\left(x+3\right)+2\left(x-3\right)+x^2-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x+9+2x-6+x^2-5x-3}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}\)
c: \(A\cdot B=\left(x+3\right)\cdot\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2}{x-3}\)