Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: AH=MN
b: Xét ΔAHC vuông tại H có
\(AH^2+HC^2=AC^2\)
nên \(AC^2-HC^2=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AH^2=AN\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)
Bài 3:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Thay x=9 vào A, ta được:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
c: Ta có: P=AB
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}+\dfrac{5-x}{x-1}\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{x+2\sqrt{x}-3+4\sqrt{x}+4+5-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{6\sqrt{x}+6}{\left(\sqrt{x}+1\right)^2}=\dfrac{6}{\sqrt{x}+1}\)
a) \(\Leftrightarrow x^2=\sqrt{4}\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm2\)
b) \(\Leftrightarrow\sqrt{\left(\dfrac{1}{2}x+1\right)^2}=9\)
\(\Leftrightarrow\left|\dfrac{1}{2}x+1\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x+1=9\\\dfrac{1}{2}x+1=-9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=-16\end{matrix}\right.\)
c) \(\Leftrightarrow\sqrt{2x}-4\sqrt{2x}+16\sqrt{2x}=52\left(đk:x\ge0\right)\)
\(\Leftrightarrow13\sqrt{2x}=52\Leftrightarrow\sqrt{2x}=4\Leftrightarrow2x=16\Leftrightarrow x=8\left(tm\right)\)
f: Ta có: \(\sqrt{\dfrac{50-25x}{4}}-8\sqrt{2-x}+\sqrt{18-9x}=-10\)
\(\Leftrightarrow\sqrt{2-x}\cdot\dfrac{5}{2}-8\sqrt{2-x}+3\sqrt{2-x}=-10\)
\(\Leftrightarrow\sqrt{2-x}=4\)
\(\Leftrightarrow2-x=16\)
hay x=-14
Câu 2:
Ta có: \(\sqrt{x^2-4x+4}=x-1\)
\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)
\(\Leftrightarrow-2x=-3\)
hay \(x=\dfrac{3}{2}\left(tm\right)\)
\(a,A=\dfrac{9x}{x}:\left[\dfrac{x\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}-\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\\ A=9:\left(\dfrac{x}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}-2}\right)=9:\dfrac{x-4}{\sqrt{x}-2}\\ A=\dfrac{9\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{9}{\sqrt{x}+2}\\ b,x=11+2\sqrt{30}\Leftrightarrow\sqrt{x}=\sqrt{6}+\sqrt{5}\\ \Leftrightarrow A=\dfrac{9}{\sqrt{6}+\sqrt{5}+2}=\dfrac{9\left(\sqrt{6}+\sqrt{5}-2\right)}{7+2\sqrt{30}}\\ \Leftrightarrow A=\dfrac{9\left(\sqrt{6}+\sqrt{5}-2\right)\left(2\sqrt{30}-7\right)}{71}\)
\(c,A+\sqrt{x}=\dfrac{9}{\sqrt{x}+2}+\sqrt{x}=\dfrac{9}{\sqrt{x}+2}+\left(\sqrt{x}+2\right)-2\\ A+\sqrt{x}\ge2\sqrt{\dfrac{9\left(\sqrt{x}+2\right)}{\sqrt{x}+2}}-2=2\sqrt{9}-2=4\left(đpcm\right)\)