K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

Bài này mà là toán lớp 5 á ?

Toán lớp 6; 7 .. gì đó chứ !

1 tháng 12 2019

ĐÂY MÀ LÀ toán 5 ạ??

1 tháng 12 2019

Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:

\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)

Suy ra 

             \(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)

Tương tự

            \(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)

và       \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)

Cộng ba BĐT trên ta có: 

           \(\frac{1}{2\sqrt{2}}A\ge B\)

Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)

\(+ca\left(4c+4a+b\right)]\)

\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)

\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)

\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)

và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)

Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)

Vậy 

              \(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)

13 tháng 5 2017

\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)

Vậy \(A=\frac{1}{20}\)

\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)

\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)

Vậy \(B=1004\)

13 tháng 5 2017

DẤU CHẤM LÀ DẤU NHÂN

a, 

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)

b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)

2 tháng 8 2016

\(=\frac{3}{1}.\frac{4}{2}.\frac{5}{3}...\frac{2018}{2016}.\frac{2019}{2017}\\ =\frac{3.4.5...2018.2019}{1.2.3...2016.2017}\\ =\frac{2018.2019}{2}=1009.2019\)

27 tháng 2 2020

= 1 nhé mk nhầm

27 tháng 2 2020

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)

\(\Rightarrow\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)

\(\Rightarrow4x+\frac{15}{16}=1\)

\(\Rightarrow4x=\frac{1}{16}\)

\(\Rightarrow x=\frac{1}{64}\)

17 tháng 7 2017

=\(\frac{1}{2}x\frac{2}{3}x...x\frac{2017}{2018}\)

=\(\frac{1}{2018}\)

bạn trừ ra là đc

18 tháng 7 2017

\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)

\(=\frac{1\cdot2\cdot3\cdot....\cdot2016\cdot2017}{2\cdot3\cdot4\cdot....\cdot2017\cdot2018}\)

\(=\frac{1}{2018}\)

20 tháng 11 2017

Ta có

\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times....\times\left(1-\frac{1}{10}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{9}{10}\)

\(=\frac{1}{10}\)