Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.2 + 2.3 + 3.4 +…+ 99.100
= 1+ (1.2 + 2) + (2.3 + 3) + (3.4 + 4) +…+ (99.100 + 100) – (1 + 2 + 3 + 4 +…+ 100)
= 12 + 22 + 32 + 42 +…+ 1002 – (1 + 100).100:2
= 100.(100 + 1).(2.100 + 1):6 – 101.100:2
= 333300
gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
**** nha ^^
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
1.2+2.3+3.4+4.5+............+99.100
=2+6+12+20+.............+9900
dãy số trên có số các số hạng là:
mìk chỉ làm đc đến đây thôi
A = 1 x 2 + 2 x 3 + 3 x 4 + . . . + 99 x 100
3A = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + . . . + 99 x 100 x ( 101 - 98 )
3A = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + . . . + 99 x 100 x 101 - 98 x 99 x 100
3A = 99 x 100 x 101
A = 99 x 100 x 101 : 3
A = 33 x 100 x 101
A = 333300
Đặt A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=99.100.101
A=333300
A = 1.2 + 2.3 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) +...+ 99.100.(101-98)
3A = 1.2.3 + 3.2.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
3A = 999900
A = 3A : 3 = 999900 : 3 = 333300
A = 1.2 + 2.3 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
3A = 999900
A = 333300
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
Đặt S = 1x2+2x3+3x4+...+98x99+99x100
S x 3 =1x2x3+2x3x3+3x4x3+...+98x99x3+99x100x3
S x 3 =1x2x(3-0)+2x3x(4-1)+3x4x(5-2)+....+98x99x(100-97)+99x100x(101-98)
S x 3 = 1x2x3 + 2x3x4-1x2x3+3x4x5-2x3x4+...+98x99x100-97x98x99+99x100x101-98x99x100
S x 3 = 99x100x101
S x 3 = 999900
S = 333300
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300