K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

b, Ta có: \(a^2=bc\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrowđpcm\)

14 tháng 8 2017

a) $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1$

(tính chất dãy tỉ số bằng nhau)

$\dfrac{a}{b}=1=>a=b$

$\dfrac{b}{c}=1=>b=c$

$\dfrac{c}{a}=1=>c=a$

Vậy a = b = c.

b) Ta có : $a^2=bc=>\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$(tính chất dãy tỉ số bằng nhau)

$=>\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$

$=>\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}$

14 tháng 8 2017

theo tinh chat cua day ti so bang nhau ta co:

a/b=b/c=c/a =a+b+c/b+c+a=1

suy ra: a/b=1

b/c=1

c/a=1

vay a=b=c=

10 tháng 6 2017

Ta có:

\(a^2\) \(=b.c\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

10 tháng 10 2017

Ta có:

\(a^2=b.c\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-c}{b-a}\)

\(Từ\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{c+a}=\dfrac{c+a}{c-a}\)

\(\)Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

10 tháng 4 2017

hình như đề sai đó bạn

10 tháng 4 2017

bạn sửa hộ mik \(\left(\dfrac{a^2+b^2}{c^2+d^2}\right)^2\) thành\(\dfrac{a^2+b^2}{c^2+d^2}\)nha!!

10 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=>\)\(ad=bc\)

\(\dfrac{a}{a-b}=\dfrac{ad}{d\left(a-b\right)}=\dfrac{bc}{ad-bd}=\dfrac{bc}{bc-bd}=\dfrac{bc}{b\left(c-d\right)}\dfrac{c}{c-d}\)

19 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )

Võ Nguyễn Thương Thương 

27 tháng 12 2018

Ta có:

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\Leftrightarrow\dfrac{1}{c}.2=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\Leftrightarrow2ab=\left(a+b\right)c\)

\(\Leftrightarrow ab+ab=ac+bc\Leftrightarrow ab-bc=ac-ab\)

\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

27 tháng 12 2018

thak

14 tháng 7 2017

Bài 2:

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

=> a = b = c

b)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

=> x = y = z (theo a)

Thay x = y = z vào biểu thức, ta có:

\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)

c)

\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)

Thay a = b = c vào biểu thức, ta có:

\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)

14 tháng 7 2017

Thanks bạn, mà bạn làm đc bài 1 không?