Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi vế trái:
= (-√7 - √5)(√7 - √5)
= -(√7 + √5)(√7 - √5)
= -(7 - 5) = -2 = VP (đpcm)
= (1 + √a)(1 - √a)
= 1 - (√a)2 = 1 - a = VP (đpcm)
a) Ta có: \(2=\sqrt{4}\)
Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)
b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)
Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)
c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)
\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)
Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)
\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)
Câu 1:
a: \(A=4\sqrt{24}-3\sqrt{54}+5\sqrt{6}-\sqrt{150}\)
\(=4\cdot2\sqrt{6}-3\cdot3\sqrt{6}+5\sqrt{6}-5\sqrt{6}\)
\(=8\sqrt{6}-9\sqrt{6}=-\sqrt{6}\)
b: \(B=\sqrt{14+4\cdot\sqrt{10}}-\dfrac{1}{\sqrt{10}+3}\)
\(=\sqrt{10+2\cdot\sqrt{10}\cdot2+4}-\dfrac{\left(\sqrt{10}-3\right)}{10-9}\)
\(=\sqrt{\left(\sqrt{10}+2\right)^2}-\sqrt{10}+3\)
\(=\sqrt{10}+2-\sqrt{10}+3=5\)
Câu 2:
a:
b: Vì (d3)//(d2) nên \(\left\{{}\begin{matrix}a=-1\\b\ne2\end{matrix}\right.\)
Vậy: (d3): y=-x+b
Thay x=1 vào (d1), ta được:
\(y=2\cdot1=2\)
Thay x=1 và y=2 vào y=-x+b, ta được:
b-1=2
=>b=3
vậy: (d3): y=-x+3
Câu 4: a) ĐK: \(x^2\ge9\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
b) ĐK: \(x^2-3x+2\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) Đk: \(-3\le x< 5\)
d) x + 3 và 5 - x đồng dấu. Xét hai trường hợp:
\(\left\{{}\begin{matrix}x+3\ge0\\5-x>0\left(\text{do mẫu phải khác 0}\right)\end{matrix}\right.\Leftrightarrow-3\le x< 5\)
\(\left\{{}\begin{matrix}x+3< 0\\5-x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>5\end{matrix}\right.\) do x ko thể đồng thời thỏa mãn cả hai nên loại.
Câu 1:
a) Đặt \(A=x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\)
\(A=x+\left|x+2\right|\cdot\left(x-2\right)\)
+) Với \(x\ge-2\):
\(A=x+\left(x+2\right)\left(x-2\right)=x+x^2-4\)
+) Với \(x< -2\):
\(A=x-\left(x+2\right)\left(x-2\right)=x-x^2+4\)
b) \(B=\sqrt{m^2-6m+9-2m}\)
\(B=\sqrt{m^2-8m+9}\)
Bạn xem lại đề nhé :)
c) \(C=1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)
\(C=1+\sqrt{x-1}\)
d) \(D=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(D=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(D=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(D=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
+) Xét \(x\ge8\):
\(D=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
+) Xét \(4< x< 8\):
\(D=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Vậy....
\(a,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)
\(b,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)
\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)
Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)
\(\Leftrightarrow P\notinđths\)
Vậy 3 điểm này ko thẳng hàng
a) \(a=2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}< \sqrt{21}=b\).
b) \(a=4\sqrt{5}=\sqrt{4^2.5}=\sqrt{80}< \sqrt{90}=\sqrt{3^2.10}=3\sqrt{10}=b\)
c) \(a=\sqrt{10}+\sqrt{5}>\sqrt{9}+\sqrt{4}=3+2=5=b\)
d) \(a-b=\sqrt{15}+\sqrt{13}-2\sqrt{14}\)
Có \(\left(\sqrt{15}+\sqrt{13}\right)^2=15+13+2\sqrt{15.13}=28+2\sqrt{\left(14+1\right)\left(14-1\right)}\)
\(=28+2\sqrt{14^2-1}< 28+2\sqrt{14^2}=56=4.14=\left(2\sqrt{14}\right)^2\)
Do đó \(\sqrt{15}+\sqrt{13}< 2\sqrt{14}\)suy ra \(a< b\).
e) \(a=\sqrt{199}+\sqrt{999}>\sqrt{196}+\sqrt{961}=14+31=45=\sqrt{2025}>\sqrt{1998}=b\)