Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt (a,b) = d => a = md; b = nd với m,n ∈ N*; (m,n) = 1 và [a,b] = dmn.
a + 2b = 48 => d(m + 2n) = 48 (1)
(a,b) + 3[a,b] => d(1 + 3mn) =114 (2)
Từ (1) và (2) => d ∈ ƯC(48,114) mà ƯCLN(48,114) = 6
=> d ∈ Ư(6) = {1;2;3;6}
Lần lượt thay các giá trị của d vào (1) và (2) ta thấy chỉ có d = 6 là thỏa mãn.
Lập bảng:
m | n | a | b |
2 | 3 | 12 | 18 |
6 | 1 | 36 | 6 |
Vậy 2 số cần tìm là: a = 12 và b = 18; a = 36 và b = 6.
Đặt (a,b)=d => a=md; b=nd với m,n thuộc N*; (m,n)=1 và [a,b]=dmn.
a+2b=48 => d(m+2n)=48 (1)
(a,b)+3[a,b] =>d(1+3mn)=114 (2)
=> Từ (1); (2) => d thuộc ƯC(48,114) mà ƯCLN(48,114)=6
=>d thuộc Ư(6)={1;2;3;6} lần lượt thay các giá trị của d vào (1) và (2) ta thấy chỉ có d=6 là thỏa mãn.
Lập bảng:
l m l n l a l b l
l 2 l 3 l 12 l 18 l
l 6 l 1 l 36 l 6 l
Vậy 2 số cần tìm là: a=12 và b=18; a=36 và b=6.
Đặt (a,b)=d => a=md; b=nd với m,n thuộc N*; (m,n)=1 và [a,b]=dmn.
a+2b=48 => d(m+2n)=48 (1)
(a,b)+3[a,b] =>d(1+3mn)=114 (2)
=> Từ (1); (2) => d thuộc ƯC(48,114) mà ƯCLN(48,114)=6
=>d thuộc Ư(6)={1;2;3;6} lần lượt thay các giá trị của d vào (1) và (2) ta thấy chỉ có d=6 là thỏa mãn.
Lập bảng:
l m l n l a l b l
l 2 l 3 l 12 l 18 l
l 6 l 1 l 36 l 6 l
Vậy 2 số cần tìm là: a=12 và b=18; a=36 và b=6.
Đặt (a,b)=d => a=md; b=nd với m,n thuộc N*; (m,n)=1 và [a,b]=dmn.
a+2b=48 => d(m+2n)=48 (1)
(a,b)+3[a,b] =>d(1+3mn)=114 (2)
=> Từ (1); (2) => d thuộc ƯC(48,114) mà ƯCLN(48,114)=6
=>d thuộc Ư(6)={1;2;3;6} lần lượt thay các giá trị của d vào (1) và (2) ta thấy chỉ có d=6 là thỏa mãn.
Lập bảng:
m n a b
2 3 12 18
6 1 36 6
Vậy 2 số cần tìm là: a=12 và b=18; a=36 và b=6.
Gọi d=ƯCLN(a,b).
Suy ra a=dm,b=dn với ƯCLN(m,n)=1. Khi đó BCNN(a,b)=ab:d=mnd
Ta có:a+2b=48. (1)
ƯCLN(a,b)+3BCNN(a,b)=114. (2)
Từ (1) và (2) suy ra :
d(m+2n)=4. (1)
d(1+3mn)=114. (2)
Từ (1) và (2) tiếp tục suy ra d thuộc ƯC(48;114)={1;2;3;6}.
+Nếu d=1 thì :m+2n=48
3mn+1=114
Suy ra m+2n=48
3mn=113(loại vì 113 không chia hết cho 3)
+Nếu d=2 thì m+2n=24
3mn+1=57
Suy ra m+2n=24 và 3mn=56(loại vì 56 không chia hết cho 3)
+Nếu d=3 thì m+2n=16
3mn+1=38
Suy ra m+2n=16 và 3mn=37(loại vì 37 không chia hết cho 3)
+Nếu d=6 thì m+2n=8
3mn+1=19
Suy ra m+2n=16 và mn=6.
Vì ƯCLN(m,n)=1 nén ta có:
M | 6 | |
N | 1 | |
A | 36 | |
B |
Giả sử d = (a;b). Khi đó ta có:
\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
# Chúc bạn học tốt!
Đặt (a,b)=d => a=md; b=nd với m,n thuộc N*; (m,n)=1 và [a,b]=dmn.
a+2b=48 => d(m+2n)=48 (1)
(a,b)+3[a,b] =>d(1+3mn)=114 (2)
=> Từ (1); (2) => d thuộc ƯC(48,114) mà ƯCLN(48,114)=6
=>d thuộc Ư(6)={1;2;3;6} lần lượt thay các giá trị của d vào (1) và (2) ta thấy chỉ có d=6 là thỏa mãn.
Lập bảng:
Vậy 2 số cần tìm là: a=12 và b=18; a=36 và b=6.