Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)
\(=x^3+14x^2+27x+51\)
b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)
\(=8x^3+18-8x^3+18=36\)
c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)
\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)
\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)
\(=64x^5-1\)
d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)
\(=x^3-x^2+14\)
Chúc bạn học tốt!!!
\(\left(x^2+3\right)\left(3-x^2\right)\)
\(\left(x^2+3\right)\left(-x^2+3\right)\)
\(\left(-x^2+3\right).x^2+3\left(-x^2+3\right)\)
\(-x^2.x^2+3x^2+3\left(-x^2+3\right)\)
\(-x^2.x^2+3x^2-3x^2+9\)
\(-x^2.x^2+9\)
i)
$I=x^4+4x^3-x^2-14x+6$
$=(x^4+4x^4+4x^2)-5x^2-14x+6$
$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$
$=(x^2+2x-3)^2+(x^2-2x+1)-4$
$=(x-1)^2(x+3)^2+(x-1)^2-4$
$=(x-1)^2[(x+3)^2+1]-4\geq -4$
Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$
k)
$K=x^4+2x^3-10x^2-16x+45$
$=(x^4+2x^3+x^2)-11x^2-16x+45$
$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$
$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$
$=(x^2+x-6)^2+(x-2)^2+5$
$=[(x-2)(x+3)]^2+(x-2)^2+5$
$=(x-2)^2[(x+3)^2+1]+5\geq 5$
Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$
g)
$G=x^4+4x^3+10x^2+12x+11$
$=(x^4+4x^3+4x^2)+6x^2+12x+11$
$=(x^2+2x)^2+6(x^2+2x)+11$
Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$
$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$
Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$
h)
$H=x^4-6x^3+x^2+24x+18$
$=(x^4-6x^3+9x^2)-8x^2+24x+18$
$=(x^2-3x)^2-8(x^2-3x)+18$
$=(x^2-3x)^2-8(x^2-3x)+16+2$
$=(x^2-3x-4)^2+2\geq 2$
Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$
\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)
\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)
\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)
\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)
\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)
\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)
\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)
\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)
Giải:
1) \(\left(x-6\right)\left(x^2+6x+36\right)-\left(x+4\right)^3=\left(x-2\right)^3+\left(x+5\right)\left(x^2-10x+25\right)-\left(2x^3+6x^2\right)\)
\(\Leftrightarrow x^3-216-\left(x^3+12x^2+48x+64\right)=x^3-6x^2+12x-8+x^3+125-2x^3-6x^2\)
\(\Leftrightarrow x^3-216-x^3-12x^2-48x-64=x^3-6x^2+12x-8+x^3+125-2x^3-6x^2\)
\(\Leftrightarrow-280-12x^2-48x=-12x^2+12x+117\)
\(\Leftrightarrow-280-48x-12x-117=0\)
\(\Leftrightarrow-397-60x=0\)
\(\Leftrightarrow-60x=397\)
\(\Leftrightarrow x=-\dfrac{397}{60}\)
Vậy ...
2) \(\left(2x+3\right)^3-\left(2x+5\right)\left(4x^2-10x+25\right)=\left(6x-1\right)^2-\left(x-2\right)\left(x^2+2x+4\right)+x^3\)
\(\Leftrightarrow8x^3+36x^2+54x+27-\left(8x^3+125\right)=36x^2-12x+1-\left(x^3-8\right)+x^3\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3-125=36x^2-12x+1-x^3+8+x^3\)
\(\Leftrightarrow54x-98=-12x+9\)
\(\Leftrightarrow54x+12x=9+98\)
\(\Leftrightarrow66x=107\)
\(\Leftrightarrow x=\dfrac{107}{66}\)
Vậy ...
x3 + 2x2y + xy2
= x(x2 + 2xy + y2)
= x(x + y)2
x2 - xy - 4x + 4y
= x(x - y) - 4(x - y)
= (x - y)(x - 4)
1.
\(x^3+2x^2y+xy^2\\ =\left(x^3+x^2y\right)+\left(x^2y+xy^2\right)\\ =x^2\left(x+y\right)+xy\left(x+y\right)\\ =\left(x+y\right)\left(x^2+xy\right)\\ =\left(x+y\right)^2.x\)
\(x^2-xy-4x+4y\\ =\left(x^2-xy\right)-\left(4x-4y\right)\\ =x\left(x-y\right)-4\left(x-y\right)=\left(x-y\right)\left(x-4\right)\)
\(\dfrac{x-1}{x-2}+\dfrac{2x-3}{x-2}+\dfrac{x-4}{x-2}\\ =\dfrac{4x-8}{x-2}=4\)
GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI
\((6x^4-4x^3+x^2+x):(2x^2-2x+1)=3x^2+x\)