Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|a+2\right|=a\)
\(\Rightarrow a+2=\hept{\begin{cases}a\\-a\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-a=2\\-a-a=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}0=2\left(loai\right)\\-2a=2\end{cases}}\)
\(\Rightarrow a=-1\)
t 27 tháng 7 2017 lúc 13:57
2x/3 =3y/4 =4z/5 ⇒60.2x/3 =60.3y/4 =60.4z/5 ⇒40.x=45.y=48.z
40.x = 45.y => x/45 = y/40 => x/9 = y/8 => x/18=y/16 [1]
45.y = 48.z => y/48 = z/45 => y/16 = z/15 [2]
Từ [1] và [2] => x/18 = y/16 = z/15 = [x+y+z]/[18+16+15] = 49/49 = 1
=> x= 18 ; y= 16 ; z= 15
Vậy x= 18 ; y= 16 ; z= 15
ta có: a+b+c=1
<=>(a+b+c)^2=1
<=>ab+bc+ca=0 (1)
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z)
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x...
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2)
từ (1) và (2) ta có đpcm
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
Theo t/c dãy TSBN:
\(\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{y+z-x}{\frac{2}{9}+\frac{5}{18}-\frac{11}{6}}=\frac{-120}{-\frac{4}{3}}=90\)
=> \(\frac{x}{\frac{11}{6}}=90\Rightarrow x=90.\frac{11}{6}=165\)
=> \(\frac{y}{\frac{2}{9}}=90\Rightarrow y=90.\frac{2}{9}=20\)
Vậy x+y = 165+20 = 185.
Ta có : \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{15}{5}z\)=> \(\frac{45y}{10}=\frac{30z}{10}\)=> 45y = 30z => 3y = 2z => \(\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{x}{33}=\frac{y}{4};\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{x}{66}=\frac{y}{4};\frac{y}{4}=\frac{z}{12}\)
=> \(\frac{x}{66}=\frac{y}{4}=\frac{z}{12}\)và y - x + z = -120
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{66}=\frac{y}{4}=\frac{z}{12}=\frac{y-x+z}{4-66+12}=\frac{-120}{-50}=\frac{12}{5}\)
=> \(\hept{\begin{cases}\frac{x}{66}=\frac{12}{5}\\\frac{y}{4}=\frac{12}{5}\\\frac{z}{12}=\frac{12}{5}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{792}{5}\\y=\frac{48}{5}\\z=\frac{144}{5}\end{cases}}\)