Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ \(1\ge x\ge0\)
Khi đó PT
\(\left(\sqrt{x}-\sqrt{1-x}\right)+\left(\sqrt[4]{x\left(1-x\right)^2}+\sqrt[4]{\left(1-x\right)^3}\right)-\left(\sqrt[4]{x^3}+\sqrt[4]{x^2\left(1-x\right)}\right)=0\)
<=>\(\left(\sqrt[4]{x}-\sqrt[4]{1-x}\right)\left(\sqrt[4]{x}+\sqrt[4]{1-x}\right)+\sqrt[4]{\left(1-x\right)^2}\left(\sqrt[4]{x}+\sqrt[4]{1-x}\right)-..\left(\sqrt[4]{x}+\sqrt[4]{1-x}\right)=0\)
<=> \(\sqrt[4]{x}-\sqrt[4]{1-x}+\sqrt[4]{\left(1-x\right)^2}-\sqrt[4]{x^2}=0\)
<=>\(\sqrt[4]{x}-\sqrt[4]{1-x}+\left(\sqrt[4]{\left(1-x\right)}-\sqrt[4]{x}\right)\left(\sqrt[4]{1-x}+\sqrt[4]{x}\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt[4]{x}=\sqrt[4]{1-x}\left(1\right)\\1+\sqrt[4]{1-x}+\sqrt[4]{x}=0\left(2\right)\end{cases}}\)
Phương trình (1) có nghiệm x=1/2
Phương trình (2) vô nghiệm do VT>0
Vậy x=1/2
1. ĐKXĐ:...
\(8-2x-\dfrac{2}{x}-2\sqrt{2-x^2}-2\sqrt{2-\dfrac{1}{x^2}}=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\dfrac{1}{x^2}-\dfrac{2}{x}+1\right)+\left(2-x^2-2\sqrt{2-x^2}+1\right)+\left(2-\dfrac{1}{x^2}-2\sqrt{2-\dfrac{1}{x^2}}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\dfrac{1}{x}-1\right)^2+\left(\sqrt{2-x^2}-1\right)^2+\left(\sqrt{2-\dfrac{1}{x^2}}-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x}-1=0\\\sqrt{2-x^2}-1=0\\\sqrt{2-\dfrac{1}{x^2}}-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
2.
ĐKXĐ:...
Ta có:
\(VT=x\sqrt{x}+1.\sqrt{12-x}\le\sqrt{\left(x^2+1\right)\left(x+12-x\right)}=2\sqrt{3\left(x^2+1\right)}\)
Dấu "=" xảy ra khi và chỉ khi: \(x\sqrt{12-x}=\sqrt{x}\)
\(\Leftrightarrow x^3-12x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6-\sqrt{35}\\x=6+\sqrt{35}\end{matrix}\right.\)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
e/ ĐKXĐ: \(-1\le x\le4\)
Tưởng nó giống câu c mà ko phải
\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(4-x\right)\left(x+1\right)}=5\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=a>0\Rightarrow a^2=5+2\sqrt{\left(x+1\right)\left(4-x\right)}\)
\(\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{a^2-5}{2}\) pt trở thành:
\(a+\frac{a^2-5}{2}=5\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{4-x}=3\)
\(\Leftrightarrow5+2\sqrt{-x^2+3x+4}=9\)
\(\Leftrightarrow\sqrt{-x^2+3x+4}=2\)
\(\Leftrightarrow-x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
b/ĐKXĐ: \(0\le x\le4\)
\(\Leftrightarrow\left(3x-7\right)\sqrt{x\left(4-x\right)}+4-x=0\)
\(\Leftrightarrow\sqrt{4-x}\left[\left(3x-7\right)\sqrt{x}+\sqrt{4-x}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\\sqrt{4-x}=\left(7-3x\right)\sqrt{x}\left(x\le\frac{7}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow4-x=x\left(7-3x\right)^2\)
\(\Leftrightarrow4-x=x\left(9x^2-42x+49\right)\)
\(\Leftrightarrow9x^3-42x^2+50x-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(9x^2-24x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{4+\sqrt{14}}{3}>\frac{7}{3}\left(l\right)\\x=\frac{4-\sqrt{14}}{3}\end{matrix}\right.\)
ĐKXĐ: \(x\le3\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{3-x}\\b=\sqrt{4-x}\\c=\sqrt{5-x}\end{matrix}\right.\) \(a;b;c\ge0\) \(\Rightarrow\left\{{}\begin{matrix}x=3-a^2\\x=4-b^2\\x=5-c^2\end{matrix}\right.\) (1)
Từ pt ban đầu ta có: \(x=ab+ac+bc\)
Thế vào (1): \(\left\{{}\begin{matrix}ab+ac+bc=3-a^2\\ab+ac+bc=4-b^2\\ab+ac+bc=5-c^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+ab+ac+bc=3\\b^2+ab+ac+bc=4\\c^2+ab+ac+bc=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a+c\right)=3\\\left(a+b\right)\left(b+c\right)=4\\\left(a+c\right)\left(b+c\right)=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a+b=X\\a+c=Y\\b+c=Z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}XY=3\\XZ=4\\YZ=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{Y}{Z}=\frac{3}{4}\\YZ=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=\frac{2\sqrt{15}}{5}\\a+c=\frac{\sqrt{15}}{2}\\b+c=\frac{2\sqrt{15}}{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\frac{2\sqrt{15}}{5}\\a-b=\frac{-\sqrt{15}}{6}\end{matrix}\right.\) \(\Rightarrow a=\frac{7\sqrt{15}}{30}\) \(\Rightarrow x=3-a^2=\frac{131}{60}\) (t/m)
a/ \(\Leftrightarrow\sqrt{x^2+x+3}-\sqrt{x^2+2}+\sqrt{x^2+x+8}-\sqrt{x^2+7}=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{x+1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}\right)=0\)
\(\Leftrightarrow x+1=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=-1\)
b/
\(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\) (1)
\(\Rightarrow7-x^2+x\sqrt{x+5}=3-2x-x^2\)
\(\Leftrightarrow x\sqrt{x+5}=-2x-4\)
\(\Rightarrow x^2\left(x+5\right)=4x^2+16x+16\)
\(\Rightarrow x^3+x^2-16\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Do các phép biến đổi ko tương đương nên cần thay nghiệm vào (1) để kiểm tra
c/ ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
d/ Đề bài là \(2\sqrt{2x+3}\) hay \(2\sqrt{2x-3}\) bạn?
e/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\sqrt{x+3+2\sqrt{x+3}+1}=x+4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+3}+1\right)^2}=x+4\)
\(\Leftrightarrow\sqrt{x+3}+1=x+4\)
\(\Leftrightarrow x+3-\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)