Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(2^{24}+2^{60}\right)\)
\(=2^{24}\left(2^{36}+1\right)\)
\(=2^{24}\cdot\left(2^4+1\right)\cdot A=17\cdot B⋮17\)
b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(B=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
=15(2+...+2^57) chia hết cho 3;15
=30(1+...+2^56) chia hết cho 2
a) \(\left(20.2^4+12.2^4-48.2^2\right):8^2\)
\(=\left(20.2^4+12.2^4-12.2^4\right):8^2\)
\(=2^4.\left(20+12-12\right):8^2\)
\(=16.20:64\)
\(=5\)
=54 . (75+175) ÷ 15625
=54 . .250 ÷ 56
=(54 ÷56) . 250
=0,04 . 250
=10
a: \(=2^{24}+2^{60}=2^{24}\left(1+2^{36}\right)\)
\(=2^{24}\cdot\left(2^4+1\right)\cdot A=2^{24}\cdot17\cdot A⋮17\)
b: \(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\) chia hết cho 3;5;15
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
A, B, C,... là tên của bài bạn nha
VD: A, 15+x=15
B, 16+14+14+14
\(=\frac{\left(2^2\right)^5.\left(3^3\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2.10}\)
\(=\frac{2^{10}.3^{12}-2.2^9.3^9}{2^{10}.3^8+2^8.2^2.3^8.5}\)
\(=\frac{2^{10}.\left(3^{12}-3^9\right)}{2^{10}.3^8.\left(1+5\right)}\)
\(=\frac{3^9.\left(3^3-1\right)}{3^8.3.2}\)
\(=\frac{3^9.26}{3^9.2}\)
\(=\frac{26}{2}=13\)
Ta có : \(4^8.2^{20}=4^8.\left(2^2\right)^{10}=4^8.4^{10}=4^{8+10}=4^{18}\)
\(=6,871947674.10^{10}\)
Ta có : 48.(22)10=48.(22)10=48.410=48+10=418