K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

Ta có : \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{1599}{1600}\)

\(=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)...\left(1-\frac{1}{1600}\right)\)

Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1600}{1601}\)

\(=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)...\left(1-\frac{1}{1601}\right)\)

Vì \(\frac{1}{2}>\frac{1}{3};\frac{1}{4}>\frac{1}{5};\frac{1}{6}>\frac{1}{7};...;\frac{1}{1600}>\frac{1}{1601}\)

\(\Rightarrow1-\frac{1}{2}< 1-\frac{1}{3};1-\frac{1}{4}< 1-\frac{1}{5};1-\frac{1}{6}< 1-\frac{1}{7};...;1-\frac{1}{1600}< 1-\frac{1}{1601}\)

\(\Rightarrow A< B\)

hay A<\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1600}{1601}\)

Vậy A<\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1600}{1601}\).

20 tháng 1 2020

Ta luôn có: 

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{7}< \frac{6}{7}\)

\(........\)

\(\frac{1599}{1600}< \frac{1600}{1601}\)

Từ trên: \(\Rightarrow A=\frac{1}{2}.\frac{3}{4}....\frac{1599}{1600}\left(1\right)\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}...\frac{1599}{1600}< \frac{2}{3}.\frac{4}{5}....\frac{1600}{1601}\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1600}{1601}\left(đpcm\right)\)

20 tháng 1 2020

bạn ơi trả lời họ mình với

20 tháng 1 2020

là sao

21 tháng 1 2020

Ta có

 \(\frac{1}{2}< \frac{2}{3},\frac{3}{4}< \frac{4}{5},...,\frac{1599}{1600}< \frac{1600}{1601}\)

Do đó ta có

A=\(\frac{1}{2}\times\frac{3}{4}\times...\times\frac{1599}{1600}< \frac{2}{3}\times\frac{4}{5}\times...\times\frac{1600}{1601}\)

#Châu's ngốc

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

25 tháng 7 2019

\(S=\frac{3}{4}+\frac{8}{9}+...+\frac{n^2-1}{n^2}\)

    \(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)

       \(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< n-1\)(1)

+ Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\frac{1}{2^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}\)

Nên S > n - 1 - ( 1 - 1/n) = n - 2 + 1/n > n - 2 ( vì 1/n > 0)    (2)

Từ (1),(2) => n - 2 < S < n - 1 mà n \(\in\)N, n \(\ge\)2 => đpcm