Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !
a) \(x=\dfrac{25}{72}\)
b)\(x=-\dfrac{1}{4}\)
\(x=\dfrac{3}{2}\)
c)\(x=\dfrac{5}{4}\) hoặc
x \(=\dfrac{8}{5}\)
d và e chịu vì mk kg giỏi lắm về mũ
f)\(x=-2\)
G)\(x=-\dfrac{5}{12}\)
a) \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{1}{10}\)
\(\dfrac{2}{3}x=\dfrac{1}{10}+\dfrac{1}{2}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
b) \(\dfrac{39}{7}:x=13\)
\(x=\dfrac{\dfrac{39}{7}}{13}=\dfrac{3}{7}\)
c) \(\left(\dfrac{14}{5}x-50\right):\dfrac{2}{3}=51\)
\(\dfrac{14}{5}x-50=51\cdot\dfrac{2}{3}=34\)
\(\dfrac{14}{5}x=34+50=84\)
\(x=\dfrac{84}{\dfrac{14}{5}}=30\)
d) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{5}{12}\)
\(\dfrac{1}{6}x=\dfrac{5}{12}\)
\(x=\dfrac{5}{12}:\dfrac{1}{6}=\dfrac{5}{2}\)
g) \(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\dfrac{11}{5}-\dfrac{3}{7}=-2\)
\(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)
\(x\cdot\dfrac{44}{7}+\dfrac{3}{7}=-\dfrac{11}{7}:\dfrac{11}{5}=-\dfrac{5}{7}\)
\(\dfrac{44}{7}x=-\dfrac{5}{7}-\dfrac{3}{7}=-\dfrac{8}{7}\)
\(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)
h) \(\dfrac{13}{4}x+\left(-\dfrac{7}{6}\right)x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x=\dfrac{5}{12}+\dfrac{5}{3}=\dfrac{25}{12}\)
\(x=1\)
Mỏi tay woa bn làm nốt nha!!
câu1
(3x-1).(1/2x5)=0
=>3x-1=0 hoặc 1/2x5=0
=>x=1/3 =>x=0
câu2
1/4+1/3 :(2x-1)=5
=> 1/3:(2x-1)=19/4
=>2x-1 =57/4
=>2x=61/4
=>x=61/8
còn hai câu sau bn ghi đề mik ko hỉu
1.
a)(3x-1)(1/2x5)=0
=>3x-1=0 hoặc 1/2x5=0
3x=0+1 x=0:1/2:5
x=1/3 x=0
Vậy x=1/3 hoặc x=0
b)1/4+1/3:(2x-1)=5
1/3:(2x-1)=5-1/4=20/4-1/4=19/4
2x-1=1/3:19/4=1/3*4/19=4/57
2x=4/57+1=4/57+57/57=61/57
x=61/57:2=61/57*1/2=61/114
Vậy x=61/114
c)(2x+2/5)2-9/25=0=02-9/25
=>2x+2/5=0
2x=0-2/5
x=-2/5:2=-2/5*1/2
x=-1/5
Vậy x=-1/5
d)(3x-1/2)3+1/9=0=03+1/9
=>3x-1/2=0
3x=0+1/2
x=1/2:3=1/2*1/3
x=1/6
Vậy x=1/6
a)
Để \(\left(3x-1\right).\left(-\frac{1}{2}x+5\right)=0\)=> 3x-1=0 hoặc \(-\frac{1}{2}x+5=0\)
=> x= \(\frac{1}{3}\) hoăc \(x=10\)
b)
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=5\) => \(\frac{1}{3}:\left(2x-1\right)=5-\frac{1}{4}=\frac{19}{4}=>2x-1=\frac{1}{3}:\frac{19}{4}=\frac{4}{57}=>x=\frac{61}{114}\)
c) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0=>\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)\(=>2x+\frac{3}{5}\in\left\{\pm\frac{3}{5}\right\}=>2x\in\left\{0;\frac{-6}{5}\right\}=>x\in\left\{0;\frac{-3}{5}\right\}\)
d) Xem lại đề
a) để (3x-1).(\(-\dfrac{1}{2}x+5\))=0
=> 3x-1 hoặc \(-\dfrac{1}{2}x+5\) =0
TH1 : 3x-1=0
3x = 0+1=1
x = 1:3 = \(\dfrac{1}{3}\)
TH2 : \(-\dfrac{1}{2}x+5\)= 0
\(-\dfrac{1}{2}x\)= 0 -5 = -5
x= -5 : \(-\dfrac{1}{2}\)
x= 10
\(1)x+\frac{5}{6}\times2\frac{2}{5}-1\frac{1}{4}=35\%\)
\(x+\frac{5}{6}\times\frac{12}{5}-\frac{5}{4}=\frac{7}{12}\)
\(x+\frac{5}{6}\times\frac{12}{5}=\frac{7}{12}+\frac{5}{4}\)
\(x+\frac{5}{6}.\frac{12}{5}=\frac{8}{5}\)
\(x+\frac{5}{6}=\frac{8}{5}:\frac{12}{5}\)
\(x+\frac{5}{6}=\frac{2}{3}\)
\(x=\frac{2}{3}-\frac{5}{6}\)
\(x=-\frac{1}{6}\)
HỌC TỐT !
\(2\)) \(\left|x-\frac{1}{2}\right|-\frac{3}{4}=0\)
\(\left|x-\frac{1}{2}\right|\) \(=0+\frac{3}{4}\)
\(\left|x-\frac{1}{2}\right|\) \(=\frac{3}{4}\)
\(x-\frac{1}{2}\) \(=\frac{3}{4}\)hoặc \(-\frac{3}{4}\)
Ta xét 2 trường hợp :
Trường hợp 1 : \(x-\frac{1}{2}=\frac{3}{4}\)
\(x\) \(=\frac{3}{4}+\frac{1}{2}\)
\(x\) \(=\frac{5}{4}\)
Trường hợp 2 : \(x-\frac{1}{2}=-\frac{3}{4}\)
\(x\) \(=-\frac{3}{4}+\frac{1}{2}\)
\(x\) \(=-\frac{1}{4}\)
Vậy \(x\in\text{{}\frac{5}{4};-\frac{1}{4}\)}