K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

= 332330881

25 tháng 12 2021

32330898

Cho mình k đúng

2 tháng 8 2020

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

* Chưa đọc thì giờ đọc cho biết, biết rồi vẫn làm là điên :)

2 tháng 8 2020

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

2 tháng 3 2021

chịu thôi

2 tháng 3 2021

2038 điểm cắt nhau nhóe !

Câu 7: Tìm số phức liên hợp của số phức z=1−2iz=1−2iA. 2−i2−iB. −1−2i−1−2iC. −1+2i−1+2iD. 1+2i1+2iCâu 8: Trong không gian Oxyz, cho hai điểm A(−1;2;3)A(−1;2;3) và B(3;0;−2)B(3;0;−2). Tìm tọa độ của vectơ −−→AB.AB→.A. −−→AB=(−4;2;5)AB→=(−4;2;5)B. −−→AB=(1;1;12)AB→=(1;1;12)C. −−→AB=(2;2;1)AB→=(2;2;1)D. −−→AB=(4;−2;−5)AB→=(4;−2;−5)Câu 9: Trong không gian Oxyz, mặt phẳng (P)(P) đi qua...
Đọc tiếp

Câu 7: Tìm số phức liên hợp của số phức z=1−2i

A. 2−i

B. −1−2i

C. −1+2i

D. 1+2i

Câu 8: Trong không gian Oxyz, cho hai điểm A(−1;2;3) và B(3;0;−2). Tìm tọa độ của vectơ AB→.

A. AB→=(−4;2;5)

B. AB→=(1;1;12)

C. AB→=(2;2;1)

D. AB→=(4;−2;−5)

Câu 9: Trong không gian Oxyz, mặt phẳng (P) đi qua điểm A(1;2;0) và vuông góc với đường thẳng d:x+12=y1=z−1−1 có phương trình là

A. x+2y−z+4=0

B. 2x−y−z+4=0

C. 2x+y−z−4=0

D. 2x+y+z−4=0

Câu 10: Họ nguyên hàm của hàm số f(x)=4x3 là

A. 4x4+C

B. 12x2+C

C. x44+C

D. x4+C

Câu 11: Công thức nguyên hàm nào sau đây đúng?

A. ∫exdx=−ex+C

B. ∫dx=x+C

C. ∫1xdx=−ln⁡x+C

D. ∫cos⁡xdx=−sin⁡x+C

Câu 12: Trong không gian Oxyz, cho a→=(−1;3;2) và b→=(−3;−1;2). Tính a→.b→.

A. 2

B. 10

C. 3

D. 4

Câu 13: Trong không gian Oxyz, điểm M(3;4;−2) thuộc mặt phẳng nào trong các mặt phẳng sau?

A. (S):x+y+z+5=0

B. (Q):x−1=0

C. (R):x+y−7=0

D. (P):z−2=0

Câu 14: Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm I(1;0;−3)và bán kính R=3?

A. (x−1)2+y2+(z+3)2=9

B. (x−1)2+y2+(z+3)2=3

C. (x+1)2+y2+(z−3)2=3

D. (x+1)2+y2+(z−3)2=9

Câu 15: Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm M(−1;2;0) và có vectơ pháp tuyến n→=(4;0;−5) là

A. 4x−5y−4=0

B. 4x−5z−4=0

C. 4x−5y+4=0

D. 4x−5z+4=0

Câu 16: Nghiệm của phương trình (3+i)z+(4−5i)=6−3i là

A. z=25+45i

B. z=12+12i

C. z=45+25i

D. z=1+12i

Câu 17: Trong không gian Oxyz, mặt phẳng đi qua tâm của mặt cầu (x−1)2+(y+2)2+z2=12 và song song với mặt phẳng (Oxz)có phương trình là

A. y+2=0

B. x+z−1=0

C. y−2=0

D. y+1=0

Câu 18: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x2−2x và trục hoành.

A. 2

B. 43

C. 203

D. −43

Câu 19: Cho F(x) là một nguyên hàm củaf(x) trên R và F(0)=2, F(3)=7. Tính ∫03f(x)dx.

A. 9

B. -9

C. 5

D. -5

Câu 20: Gọi z1,z2 là hai nghiệm phức của phương trình z2−6z+14=0. Tính S=|z1|+|z2|.

A. S=32

B. S=26

C. S=43

D. S=214

Câu 21: Trong không gian Oxyz, tính khoảng cách giữa hai mặt phẳng (P):2x+2y−z−11=0 và (Q):2x+2y−z+4=0.

A. d((P),(Q))=5

B. d((P),(Q))=3

C. d((P),(Q))=1

D. d((P),(Q))=4

Câu 22: Cho z=1+3i. Tìm số phức nghịch đảo của số phức z.

A. 1z=14+34i

B. 1z=12−32i

C. 1z=12+32i

D. 1z=14−34i

Câu 23: Tính tích phân I=∫02019e2xdx.

A. I=12e4038

B. I=12e4038−1

C. I=12(e4038−1)

D. 

0
Câu 24: Cho hàm số f(x)f(x) thỏa mãn 2019∫0f(x)dx=1∫02019f(x)dx=1. Tính tích phân I=1∫0f(2019x)dx.I=∫01f(2019x)dx.A. I=0I=0B. I=1I=1C. I=2019I=2019D. I=12019I=12019Câu 25: Trong không gian Oxyz, mặt phẳng (P)(P) đi qua 2 điểm A(1;2;0)A(1;2;0), B(2;3;1)B(2;3;1) và song song với trục OzOz có phương trình làA. x−y+1=0x−y+1=0B. x−y−3=0x−y−3=0C. x+z−3=0x+z−3=0D. x+y−3=0x+y−3=0Câu 26: Cho 4∫0f(x)dx=10∫04f(x)dx=10 và 8∫4f(x)dx=6∫48f(x)dx=6....
Đọc tiếp

Câu 24: Cho hàm số f(x) thỏa mãn ∫02019f(x)dx=1. Tính tích phân I=∫01f(2019x)dx.

A. I=0

B. I=1

C. I=2019

D. I=12019

Câu 25: Trong không gian Oxyz, mặt phẳng (P) đi qua 2 điểm A(1;2;0)B(2;3;1) và song song với trục Oz có phương trình là

A. x−y+1=0

B. x−y−3=0

C. x+z−3=0

D. x+y−3=0

Câu 26: Cho ∫04f(x)dx=10 và ∫48f(x)dx=6. Tính ∫08f(x)dx.

A. 20

B. -4

C. 16

D. 4

Câu 27: Họ nguyên hàm của hàm số y=xsin⁡x là

A. −xcos⁡x−sin⁡x+C

B. xcos⁡x−sin⁡2x+C

C. −xcos⁡x+sin⁡x+C

D. xcos⁡x−sin⁡x+C

Câu 28: Cho số phức z=2+5i. Điểm biểu diễn số phức z  trong mặt phẳng Oxy có tọa độ là

A. (2;−5)

B. (5;2)

C. (2;5)

D. (−2;5)

Câu 29: Cho ∫−12f(x)dx=3 và ∫2−1g(x)dx=1. Tính I=∫−12[x+2f(x)−3g(x)]dx

A. 52

B. 212

C. 262

D. 72

Câu 30: Trong không gian Oxyz, cho d:x−12=y+1−1=z−32. Đường thẳng nào sau đây song song với d?

A.Δ:x−2−2=y1=z−1−2

B. Δ:x−3−2=y+21=z−5−2

C. Δ:x+1−2=y1=z−1−2

D. Δ:x−22=y1=z−1−2

Câu 31: Tìm họ nguyên hàm của hàm số f(x)=e5x−3.

A. ∫f(x)dx=5e5x−3+C                            

B. ∫f(x)dx=15e5x−3+C

C. ∫f(x)dx=e5x−3+C                              

D. ∫f(x)dx=−13e5x−3+C

Câu 32: Tìm các số thực x,y thỏa mãn: x+2y+(2x−2y)i=7−4i

A.x=113,y=−13

B. x=−113,y=13

C. x=1,y=3

D. x=−1,y=−3

Câu 33: Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm M(−1;0;0) và N(0;1;2) là

A. x−11=y1=z2

B. x+11=y1=z2

C. x1=y−11=z+22

D. x1=y+11=z−22

Câu 34: Trong mặt phẳng tọa độ Oxy, cho điểm A(−3;4) biểu diễn cho số phức z. Tìm tọa độ điểm B biểu diễn cho số phức ω=iz¯.

A. B(3;−4)

B. B(4;3)

C. B(3;4)

D. B(4;−3)

Câu 35: Cho số phức z=1+3i. Tìm phần thực của số phức z2.

A. -8

B. 8+6i

C. 10

D. −8+6i

Câu 36: Cho tích phân I=∫3512x−1dx=aln⁡3+bln⁡5(a,b∈Q). Tính S=a+b.

A. S=0

B. S=−32

C. S=1

D. S=12

Câu 37: Tính I=∫01(2x−5)dx.

A. -3

B. -4

C. 2

D. 4

Câu 38: Trong không gian Oxyz, cho ba vectơa→=(−2;0;1), b→=(1;2;−1), c→=(0;3;−4). Tính tọa độ vectơ u→=2a→−b→+3c→.

A. u→=(−5;7;9)

B. u→=(−5;7;−9)

C. u→=(−1;3;−4)

D. u→=(−3;7;−9)

Câu 39: Cho f(x) là hàm liên tục trên R thỏa mãn f(1)=1 và ∫01f(t)dt=12.  Tính I=∫0π2sin⁡2x.f′(sin⁡x)dx.

A. I=−1

B. I=12

C. I=−12

D. I=1

Câu 40: Cho phương trình z2+bz+c=0 ẩn z và b, c là tham số thuộc tập số thực. Biết phương trình nhận z=1+i là một nghiệm. Tính T=b+c.

A. T=0

B. T=−1

C. T=−2

D. T=2

Câu 41: Trong không gian Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d:x−22=y−33=z+4−5 và d′:x+13=y−4−2=z−4−1.

A. x2=y−23=z−3−1

B. x1=y1=z−11

C. x−22=y−23=z−34

D. x−22=y+22=z−32

Câu 42: Biết 1+i là nghiệm của phương trình zi+azi+bz+a=0(a,b∈R)ẩn z trên tập số phức. Tìm b2−a3.

A. 8

B. 72

C. -72

D. 9

Câu 43: Cho hình phẳng (H) giới hạn bởi parabol y=ax2+1(a>0), trục tung và đường thẳng x=1. Quay (H)quanh trục Ox được một khối tròn xoay có thể tích bằng 2815π. Mệnh đề nào dưới đây đúng?

A. 2<a<3

B. 0<a<2

C. 5<a<8

D. 3<a<5

Câu 44: Trong không gian Oxyz, cho hai đường thẳng d1:x−11=y+1−1=z2, d2:x1=y−12=z1. Đường thẳng d đi qua A(5;−3;5) lần lượt cắt d1,d2 tại B và C. Độ dài BC là:

A. 19

B. 32

C. 25

D. 19

Câu 45: Trong không gian Oxyz, cho đường thẳng d:x+32=y−11=z−1−3. Hình chiếu vuông góc của d trên mặt phẳng (Oyz) là một đường thẳng có vectơ chỉ phương là

A. u→=(0;1;−3)

B. u→=(0;1;3)

C. u→=(2;1;−3)

D. u→=(2;0;0)

Câu 46: Trong không gian Oxyz, cho điểm I(1;0;−1) là tâm của mặt cầu (S) và đường thẳng d:x−12=y+12=z−1 cắt mặt cầu (S) tại hai điểm A, B sao cho AB=6. Mặt cầu (S) có bán kính R bằng:

A. 10

B. 10

C. 22

D. 2

Câu 47: Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1, tâm trùng gốc tọa độ (hình vẽ). Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (−1≤x≤1) thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.

A. V=π

B. V=433                        

C. V=33

D. V=3

Câu 48: Cho hai số phức z1,z2 thỏa mãn |z1|=|z2|=|z1−z2|=1. Tính |z1+z2|.

A. 3                  

B. 32

C. 1

D. 23

Câu 49: Xét số phức z thỏa mãn |iz−2i−2|−|z+1−3i|=34. Tìm giá trị nhỏ nhất của biểu thức P=|(1−i)z+1+i|.

A. Pmin=34

B. Pmin=17

C. Pmin=342

D. Pmin=1317

Câu 50: Trong không gian Oxyz, cho A(3;1;2), B(−3;−1;0) và mặt phẳng (P):x+y+3z−14=0. Điểm  M thuộc mặt phẳng (P) sao cho ΔMAB vuông tại M. Tính khoảng cách từ điểm M đến mặt phẳng Oxy.

A. 1   B. 5   C. 3   D. 4

1
7 tháng 5 2021

các bạn giúp mik với nha mik cảm ơn nhìu

11 tháng 12 2020

undefined

NV
18 tháng 3 2021

ĐKXĐ: \(x\in\left[0;2018\right]\)

\(y'=\dfrac{1009-x}{\sqrt{2018x-x^2}}=0\Rightarrow x=1009\)

Hàm đồng biến trên \(\left(0;1009\right)\)

10 tháng 9 2019

Chọn D

NV
6 tháng 4 2019

Gọi tọa độ các giao điểm là \(A\left(a;0;0\right)\); \(B\left(0;b;0\right)\); \(C\left(0;0;c\right)\)

Không làm mất tính tổng quát, chỉ cần xét trường hợp \(a;b;c>0\)

Phương trình mặt phẳng (P) theo đoạn chắn: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

Ta có: \(S=OA+OB+OC=a+b+c\)

Do \(\left(P\right)\) qua M nên: \(\frac{4}{a}+\frac{1}{b}+\frac{9}{c}=1\)

Áp dụng BĐT Cauchy-Scwarz: \(\frac{2^2}{a}+\frac{1^2}{b}+\frac{3^2}{c}\ge\frac{\left(2+1+3\right)^2}{a+b+c}=\frac{36}{a+b+c}\)

\(\Rightarrow\frac{36}{a+b+c}\le1\Rightarrow a+b+c\ge36\)

\(\Rightarrow S_{min}=36\) khi \(\left\{{}\begin{matrix}a+b+c=36\\\frac{2}{a}=\frac{1}{b}=\frac{3}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12\\b=6\\c=18\end{matrix}\right.\)

Phương trình (P) khi đó có dạng: \(\frac{x}{12}+\frac{y}{6}+\frac{z}{18}=1\)

Hay chuyển dạng chính tắc: \(3x+6y+2z-36=0\)

Không thấy điểm I ở đâu để tính tiếp cả, nhưng đến đây thì mọi chuyện đơn giản, chỉ cần áp dụng công thức khoảng cách vào là xong.

20 tháng 6 2018

Chọn C

Khối hai mươi mặt đều có các mặt là tam giác nên thuộc loại  3 ; 5 .

15 tháng 4 2021

Gọi A là điểm biểu diễn số phức z

Khi đó A nằm trên đường trung trực của đoạn thẳng đi qua hai điểm (0;2) và (2;4). Ta tìm được pt đường thẳng đó là: d: x+y-4=0

|z|=OA min khi và chỉ khi A là hình chiếu của O trên d

Khi đó ta tìm được A(2;2)

->min|z|=\(2\sqrt{2}\)