K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2023

Yêu cầu đề bài

21 tháng 8 2023

\(2x^2y+4xy^2+2y^2-8y=2y\left(x^2+2xy+y-4\right)\)

 

18 tháng 7 2016

(x²+4xy+4y²)-(2x+4y)+10=(x+2y)²-2(x+2y)+10=5²-10+10=25 :333

18 tháng 7 2016

:333 là biểu cảm nhé

19 tháng 7 2016

cái này mk làm ở câu dưới của bạn r` đó -_-" nèCâu hỏi của Phạm Hoa - Toán lớp 8 - Học toán với OnlineMath

19 tháng 7 2016

a, =(x+2)*(y+2*x)

= (88+2)(y+2.-76)

= 90*y-6660

b, = (x-7)*(y+x)

\(\left(7\frac{3}{5}-7\right)\left(2\frac{2}{5}+7\frac{3}{5}\right)\)

= 3/5 . 10

=6

k cho tớ nha :)))))) 

10 tháng 9 2023

a) \(x^2+xy+y^2+1\)

\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)

\(\Rightarrow dpcm\)

10 tháng 9 2023

b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)

\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)

\(\Rightarrow dpcm\)

15 tháng 7 2016

c:   x^6 - y^6 

= (x^3)^2 - (y^3)^2 

= (x^3 - y^3) (x^3 + y^3)

= (x+y) (x^2 -xy+y^2) (x-y) (x^2 +xy+y^2)

15 tháng 7 2016

 a:   x^2 + 4y^2 + 4xy

= x^2 + 4xy + 4y^2

= (x+2y)^2

40: Ta có: \(A=27x^3+8y^3-3x-2y\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)-\left(3x+2y\right)\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2-1\right)\)

12 tháng 10 2019

Thầy mới chữa ạ :33

x2 + 8y2 + 4xy - 2x - 4y = 4

x2 + 4y2 + 1 + 4xy - 2x - 4y = 5 - 4y2

( x + 2y - 1 )2 + 4y2 = 5

Vì \(4y^2\ge0\)    \(4y^2\in Z\)

    \(4y^2⋮4\)       

TH1 : 4y2 = 0

=> y = 0

=> ( x + 2y - 1)2 = 5

Mà x là số nguyên

      5 không phải là số chính phương

=> Loại

TH2 : 4y2 > 0

Mà y thuộc Z

=> 4y2 = 4

=> y thuộc { -1;1 }

Với y = 1 => ( x + 1 )2 = 1 => x thuộc { 0;-2 }

Với y = -1 => ( x - 2)2 = 1 => x  thuộc { 2;4 }

Vậy \(\left(x;y\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(2;-1\right);\left(4;-1\right)\right\}\)

     

12 tháng 10 2019

\(\Leftrightarrow2\left(x^2+2xy+y^2\right)-\left(x^2+2x+1\right)+6\left(y^2-\frac{2}{3}y+\frac{1}{9}\right)-\frac{11}{3}=0\)

đến đây ,Áp dụng HĐT vào 2 cái đầu rồi giải nốt nha!^_^

16 tháng 8 2023

1, \(x^2\) - \(x\) + \(\dfrac{1}{4}\) = 0

   \(x^2\) - 2.\(x\).\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) = 0

   (\(x\) - \(\dfrac{1}{2}\))2 = 0

    \(x\)  - \(\dfrac{1}{2}\) =0

     \(x\)        = \(\dfrac{1}{2}\)

16 tháng 8 2023

2,    \(x^2\) - 10\(x\) = -25

     \(x^2\) - 10\(x\) + 25 = 0

      (\(x\) - 5)2 = 0

       \(x\) - 5 =0

       \(x\)       = 5

    

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :