Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,4x\left(1-x\right)-8=1-\left(4x^2+3\right)\\ \Leftrightarrow4x-4x^2-8=1-4x^2-3\\ \Leftrightarrow4x-4x^2-8-1+4x^2+3=0\\ \Leftrightarrow4x-6=0\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(2,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\\ \Leftrightarrow\left(2-3x\right)\left(x+11\right)-\left(2-3x\right)\left(5x-2\right)=0\\ \Leftrightarrow\left(2-3x\right)\left(x+11-5x+2\right)=0\\ \Leftrightarrow\left(2-3x\right)\left(-4x+13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
a) (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3
<=> x3 - 6x2 + 12x - 8 + 9x2 - 1 - x3 - 3x2 - 3x - 1 = 0
<=> 9x - 10 = 0
<=> 9x = 10
<=> x = 10/9
Vậy S = {10/9}
b) (x + 1)(2x - 3) = (2x - 1)(x + 5)
<=> 2x2 - x - 3 - 2x2 - 9x + 5 = 0
<=> -10x + 2 = 0
<=> -10x = -2
<=> x = 1/5
Vậy S = {1/5}
c) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)
<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22
<=> -5x2 + 2x + 5x2 + x + 22 - 1 = 0
<=> 3x = -21
<=> x = -7
Vậy S = {-7}
d) (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2
<=> x2 + x - 12 - 6x + 4 - x2 + 8x - 16 = 0
<=> 3x - 24 = 0
<=> 3x = 24
<=> x = 8
Vậy S = {8}
e) x(x + 3)2 - 3x = (x + 2)3 + 1
<=> x3 + 6x2 + 9x - 3x = x3 + 6x2 + 12x + 8 + 1
<=> x3 + 6x2 + 6x - x3 - 6x2 - 12x = 9
<=> -6x = 9
<=> x = -3/2
Vậy S = {-3/2}
f) (x + 1)(x2 - x + 1) - 2x = x(x + 1)(x- 1)
<=> x3 + 1 - 2x = x3 - x
<=> x3 - 2x - x3 + x = -1
<=> -x = -1
<=> x = 1
Vậy S = {1}
(x+2)^3-(x-2)^3=12x(x-1)-8
<=>x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8
<=>12x^2+16=12x^2-12x-8
<=>12x+24=0
<=>x=-24/12=-2
Vậy S={-2}
tick nha các bạn
(x+2)^3-(x-2)^3=12x(x-1)-8
<=>x3+6x2+12x+8-x3+6x2-12x+8=12x2-12x-8
<=>12x2+16=12x2-12x-8
<=>12x+24=0
<=>x=-24/12=-2
Vậy S={-2}
c) \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
d) \(2x^3+3x^2+3x+1=\left(2x+1\right)\left(x^2+x+1\right)\)
e) \(2x^3-5x^2+5x-3=\left(2x-3\right)\left(x^2-x+1\right)\)
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
\(\left(\dfrac{2x}{3}-\dfrac{1}{3}\right)+\left(3x-2x+1\right)=8\)
\(\Leftrightarrow\dfrac{2x-1}{3}+x-7=0\Rightarrow2x-1+3x-21=0\Leftrightarrow x=\dfrac{22}{5}\)
\(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)+\left[3x-2\left(x-1\right)\right]=8\)
\(\Rightarrow\dfrac{2}{3}x-\dfrac{1}{3}+3x-2x+2=8\)
\(\Rightarrow\dfrac{5}{3}x=\dfrac{19}{3}\Rightarrow x=\dfrac{19}{5}\)