K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2014

Ko có số nào

 

 

10 tháng 10 2019

A không là tập hợp rỗng

- Tập hợp rỗng là tập hợp không có một phần tử nào , Còn A là tập hợp có 1 phân tử đó là phần tử 0.

- vậy không thể nói rằng A = tập hợp rỗng

23 tháng 12 2018

Câu 1:

Ta có:

abbc < 10.000 
=> ab.ac.7 < 10000 
=> ab.ac < 1429 
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) 
=> a0 < 38 
\(\Rightarrow a\le3\)
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại 
+)Với a = 2 ta có 
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) 
=> a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
Có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
Lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) 
=> 1c.7 < 110 => 1c < 16 => c < 6 
Vậy c chỉ có thể = 5 
Ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105 
<=> 100.1b + b5 = 1b.105b 
<=> b5 = 5.1b 
<=> 10b + 5 = 5.(10+b) 
=> b = 9 
Vậy số abc là 195

23 tháng 12 2018

Câu 2:

SSH là: [ ( 2n - 1 ) - 1 ] : 2 + 1 = n ( số )

Tổng là: [ ( 2n - 1 ) + 1 ] . n : 2 = 2n . n : 2 = 2n2 : 2 = n2 

=> M là số chính phương

CHO MÌNH HỎI BÀI 1: abcd là a*b*c*d hay là một số gồm 4 chữ số abcd vậy bạn

abbc là một số nhé

6 tháng 3 2020

Giải thích các bước giải:

Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:

+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:

∙∙ Xét p=2p=2. Khi đó ta có:

8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.

Vậy bài toán đúng với p=2p=2

∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)

∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.

Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).

Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3

⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).

Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)

Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.

Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.

+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:

∙∙ Xét p=2p=2. Khi đó ta có:

8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)

∙∙ Xét p=3p=3. Khi đó ta có:

8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.

Vậy bài toán đúng với p=3p=3

∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.

Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).

Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3

⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).

Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)

Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.

Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số 

6 tháng 3 2020

Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .

* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )

* Xét : p # 3

Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .

p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .

Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p- 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .

Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3

\(\Rightarrow\) 8p + 1 là hợp số  .

Bạn tham khảo bài của mình nhé !!