Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\)\(-\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
\(M=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\right)\)\(-\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}-\frac{1}{9}-\frac{1}{10}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{2}{6}-\frac{2}{8}-\frac{2}{10}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\)
\(M=1-\frac{1}{2}-\frac{2}{4}\)
\(M=1-\frac{1}{2}-\frac{1}{2}\)
\(M=0\)
HOK TỐT
\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)
\(\Rightarrow5A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow5A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\right)\)
\(\Rightarrow5A=1-\frac{1}{8}\)
\(\Rightarrow A=\left(1-\frac{1}{8}\right).\frac{1}{5}=\frac{7}{40}\)
\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)
\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{5}{7.8}\right)\)
\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=5\left(1-\frac{1}{8}\right)\)
\(A=5.\frac{7}{8}\)
\(A=\frac{38}{8}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
chúc bn học tốt
\(1,27+2,77+4,27+5,77+...+31,27+32,47\)
\(=\left(1,27+32,77\right)+\left(2,77+31,27\right)+....+\left(16,27+17,77\right)\)
\(=34,04+34,04+....+34,04\)( 11 số hạng)
\(=34,04.11=374,44\)
chúc bn học tốt
\(D=\dfrac{5}{1\cdot2}+...+\dfrac{5}{199\cdot200}\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{199}-\dfrac{1}{200}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{199}{200}=\dfrac{199}{80}\)
Lời giải:
\(D=5\times \left(\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+...+\frac{1}{199\times 200}\right)\)
\(=5\times \left(\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+...+\frac{200-199}{199\times 200}\right)\)
\(=5\times \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}\right)=5\times (1-\frac{1}{200})\)
\(=5\times \frac{199}{200}=\frac{995}{200}=\frac{199}{40}\)