Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72+89/90
=1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
=9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
=9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
=9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=9 – (1 – 1/10) = 9 – 9/10 = 81/10
b)4/3.7 + 4/7.11 + 4/11.15 + 4/15.19 + 4/19.23 + 4/23.27
=4.(4/3.7 + 4/7.11 + ........+ 4/23.27 )
=1.( 1/3.7 + 1/7.11 + ......+ 1/23.27 )
=1.(1/3 - 1/7 + 1/7 - 1/11 +............ + 1/23 - 1/27 )
=1.(1/3 - 1/27 )
=1.(9/27 - 1/27)
=1.8/27
=8/27
c)1/10+1/40+1/88+1/154+1/138+1/340
=1/2.5 + 1/5.8 + 1/11.8 + 1/11.14 + 1/14.17 + 1/17.20
=1/3. (3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 + 3/14.17 + 3/17.20 )
=1/3. ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 + 1/17 -1/20 )
=1/3. ( 1/2 - 1/20 )
=1/3. 9/20
=3/20
P/S: CHÚC HOK TỐT !
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\)
Từ 2 đến 9 có : ( 9 - 2 ) / 1 + 1 = 8 ( số hạng ) => có 8 số 1
\(\Rightarrow8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{109}{110}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{110}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{10\cdot11}\right)\)
Từ 1 đến 10 có : ( 10 - 1 ) / 1 + 1 = 10 ( số hạng ) => có 10 số 1
\(\Rightarrow10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{11}\right)\)
\(=10-\frac{10}{11}=\frac{100}{11}\)
A = 1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72 + 89/90
A = (1 - 1/2) + (1 - 1/6) + (1 - 1/12) + (1 - 1/20) + (1 - 1/30) + (1 - 1/42) + (1 - 1/56) + (1 - 1/72) + (1 - 1/90)
A = 9 - (1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90)
A = 9 - [1/(1 x 2) + 1/(2 x 3) + 1/(3 x 4) + 1/(4 x 5) + 1/(5 x 6) + 1/(6 x 7) + 1/(7 x 8) + 1/(8 x 9) + 1/(9 x 10)]
A = 9 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/8 - 1/9 + 1/9 - 1/10)
A = 9 - (1 - 1/10)
A = 9 - 9/10
A = 90/10 - 9/10
A = 81/10
1.\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{23}-\frac{4}{27}\)
\(=\frac{1}{3}-\frac{1}{27}=\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)
2. Đặt \(A=\frac{3}{14}+\frac{3}{84}+\frac{3}{204}+\frac{3}{374}+\frac{3}{594}+\frac{3}{864}\)
\(\Rightarrow A=\frac{3}{2.7}+\frac{3}{7.12}+...+\frac{3}{27.32}\)
\(\Rightarrow5A=3.\left(\frac{5}{2.7}+\frac{5}{7.12}+...+\frac{5}{27.32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{27}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\frac{15}{32}=\frac{45}{32}\Rightarrow A=\frac{45}{32}:5=\frac{9}{32}\)
3. Đặt \(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{340}\)
\(\Rightarrow3S=\frac{3}{10}+\frac{3}{40}+...+\frac{3}{340}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\Rightarrow S=\frac{9}{20}:3=\frac{3}{20}\)
Câu 1:
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
\(A=\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
Gọi \(A=9-B\)
\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(B=1-\frac{1}{10}=\frac{9}{10}\)
\(A=9-\frac{9}{10}\)
\(A=\frac{90-9}{10}=\frac{81}{10}\)
Ko đúng hơi tiếc :D
Câu hỏi của Try Build Gundam - Toán lớp 7 - Học toán với OnlineMath
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90 =
1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90 =
9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90) =
9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)] =
9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10) =
9 – (1 – 1/10) = 9 – 9/10 = 81/10
9 - A = 1 - 1/2 + 1-5/6 + 1 - 11/12 + ... + 1-89/90
9 - A = 1/2 + 1/6 + 1/12 + .. + 1/90
9 - A = 1/1.2 + 1/2.3 + 1/3.4 + .. + 1/9.10
9-A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10
9 -A = 1/1 - 1/10
9 - A = 9/10
A = 9 - 9/10
A = 81/10
ta có
\(B=\frac{1}{2}+\frac{1}{6}+................+\frac{1}{90}=\frac{1}{1x2}+.....+\frac{1}{9x10}=1-\frac{1}{2}+...+\frac{1}{9}-\frac{1}{10}=\frac{9}{10}\)
Dễ thấy B+A=1+1+...+1=10
=>A=10-B=\(10-\frac{9}{10}=\frac{91}{10}\)
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+....+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+..+\left(1-\frac{1}{90}\right)\)
\(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{9.10}\right)\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
9 số 1
\(A=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9-\left(1-\frac{1}{10}\right)\)
\(A=9-\frac{9}{10}\)
\(A=\frac{81}{10}\)
Ủng hộ mk nha ^-^
dxdessxszsuázwszxewẫzdewẵzd