Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi O là tâm đường tròn ngoại tiếp. Do tam giác ABC là tam giác đều nên O đồng thời là trọng tâm tam giác đều ABC.
Lại có:
+ O là trọng tâm tam giác nên
+ Bán kính đường tròn ngoại tiếp tam giác:
Ta có: NA2 + NB2 + NC2 ngắn nhất
⇔ NO2 ngắn nhất vì R không đổi
⇔ NO ngắn nhất
⇔ N là hình chiếu của O trên d.
a, Gọi I là trọng tâm của ΔABC
⇒ \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
MA2 + MB2 + MC2 = k2
⇔ 3MI2 + 2\(\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right)+AB^2+AC^2+BC^2\) = k2
⇔ 3MI2 = k2 - 1014
⇔ MI = \(\sqrt{\dfrac{k-1014}{3}}\) = const
Vậy M thuộc \(\left(I;\sqrt{\dfrac{k-1014}{3}}\right)\)
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
Gọi O là tâm đường tròn ngoại tiếp tam giác, D là trung điểm BC
\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}\)
Đặt \(T=MB^2+MC^2-2MA^2\)
\(T=\left(\overrightarrow{MO}+\overrightarrow{OB}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OC}\right)^2-2\left(\overrightarrow{MO}+\overrightarrow{OA}\right)^2\)
\(=OB^2+OC^2-2OA^2+2\overrightarrow{MO}\left(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA}\right)\)
\(=2\overrightarrow{MO}\left(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA}\right)\)
\(=2\overrightarrow{MO}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=4\overrightarrow{MO}.\overrightarrow{AD}\)
\(=4R.AD.cos\left(\overrightarrow{MO};\overrightarrow{AD}\right)\)
Do R và AD cố định \(\Rightarrow T_{min}\) khi \(cos\left(\overrightarrow{MO};\overrightarrow{AD}\right)\) đạt min
\(\Rightarrow cos\left(\overrightarrow{MO};\overrightarrow{AD}\right)=-1\)
\(\Rightarrow\overrightarrow{MO}\) và \(\overrightarrow{AD}\) là 2 vecto ngược chiều
\(\Rightarrow\) M là giao điểm của đường thẳng d và đường tròn ngoại tiếp tam giác, với d đi qua O và song song AD sao cho A và M nằm về 2 phía so với đường thẳng BC
Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6
= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8
⇒ A = m - 2 2 - 12 ≥ 12
Suy ra m i n A = - 12 ⇔ m = 2
m = 2 thỏa mãn (*)
Vậy với m = 2 thì biểu thức A đạt giá trị nhỏ nhất.
Đáp án cần chọn là: A
Bài 1:
Do hệ số \(a>0\Rightarrow y_{max}\) tại 1 trong 2 đầu mút của đoạn xét
Mà \(-\frac{b}{2a}=1\); ta có \(1-\left(-1\right)>2-1\) nên \(y\) đạt max tại \(x=-1\)
\(y\left(-1\right)=1+2+m^2+m-5=0\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Câu 2:
Gọi G là trọng tâm tam giác ABC
\(P=MA^2+MB^2+MC^2=\overrightarrow{MA}^2+\overrightarrow{MB}^2+\overrightarrow{MC}^2\)
\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=3MG^2+GA^2+GB^2+GC^2\)
Do \(G\) cố định \(\Rightarrow P_{min}\Leftrightarrow MG_{min}\Rightarrow M\) là chân đường cao hạ từ \(G\) xuống BC \(\Rightarrow M\) là trung điểm BC
em cảm ơn =)))