K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2020

x-2y=3 hay x-2y+3

24 tháng 9 2020

1) \(x-2y=3\Rightarrow\hept{\begin{cases}x=3+2y\\y=\frac{x-3}{2}\end{cases}}\)

\(\Rightarrow A=2x\left(x+2y-3\right)-y\left(6x-3y-10\right)+x-7+\left(x-3y\right)^2\)

\(=2x^2+4xy-6x-6xy+3y^2+10y+x-7+x^2-6xy+9y^2\)

\(=3x^2+12y^2-8xy-5x+10y-7\)

\(=3.\left(3+2y\right)^2+12y^2-8\left(3+2y\right).y-5\left(3+2y\right)+10y-7\)

\(=3\left(9+12y+4y^2\right)+12y^2-8\left(3y+2y^2\right)-15-10y+10y-7\)

\(=27+36y+12y^2+12y^2-24y-16y^2-15-10y+10y-7\)

\(=8y^2+12y+5\)

24 tháng 9 2020

\(M=\left(x^2-2x+1\right)\left(1+2x\right)-\left(x^2+2x+1\right)\left(1-3x\right)-\left(3-6x\right)\left(x^2+3x+2\right)\)

\(=x^2+2x^3-2x-4x^2+1+2x-x^2+3x^8-2x+6x^2-1+3x-3x^2-9x-6+6x^8\)\(+18x^2+12x=11x^3+17x^2+4x-6\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

1.

a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$

$=x^2+2x+4+\frac{10}{x-2}$

Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên. 

Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$

$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$

b.

\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)

Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$

$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$

$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$

$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

Bài 2:

$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.

$\Rightarrow P$ nguyên với mọi $x$ nguyên.

26 tháng 12 2020

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

Vậy M=1

26 tháng 12 2020

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )3 - 3ab( a + b ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 13 - 3ab.1 + 3ab( 12 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

30 tháng 12 2018

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)'

\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

b tự làm nốt nhé~

30 tháng 12 2018

\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(M=x^3+3^3-x^3-54+x\)

\(M=x+27-54\)

\(M=x+27-54\)

\(M=7-27\)

\(M=-20\)

28 tháng 10 2020

Bài 2:

a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)

c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)

\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)

14 tháng 10 2020

a, \(x^3-2x^2+3x-6=x\left(x^2+3\right)-2\left(x^2+3\right)=\left(x-2\right)\left(x^2+3\right)\)

b, \(x^2+2x+1-4y^2=\left(x+1\right)^2-\left(2y\right)^2=\left(x+1-2y\right)\left(x+1+2y\right)\)

14 tháng 10 2020

\(\left(-2x\right)\left(3x+1\right)+\left(x-2\right)\left(2x+1\right)=-6x^2-2x+2x^2+x-4x-2\)

\(=-4x^2-5x-2\)

Sửa 2x + 1 => 3x + 1 có vẻ sẽ ok hơn nhé ! 

21 tháng 7 2019

\(a)=\left(27+73\right)^2=100^2=10000\)

\(b)=\left(63-13\right)^2=50^2=2500\)