Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)
Vậy...
b) \(ĐKXĐ:\) \(x\ne-2;\) \(x\ne4\)
\(\frac{3}{x+2}+\frac{2}{x-4}=0\)
\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Rightarrow\)\(5x-8=0\)
\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)
Vậy...
c) \(x^3+4x^2+4x+3=0\)
\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)
\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\)\(x+3=0\) (do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))
\(\Leftrightarrow\)\(x=-3\)
Vậy...
\(\frac{-5}{9}x+1=\frac{2}{3}x-10\)
\(\frac{-5}{9}x+\frac{9}{9}=\frac{6}{9}x-\frac{90}{9}\)
\(-5x+9=6x-90\)
\(-5x-6x=-90-9\)
\(-11x=-99\)
\(x=\frac{-99}{-11}=9\)
b. \(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x-20}{10}+\frac{x-19}{11}=4\)
\(\frac{x-22}{8}-1+\frac{x-21}{9}-1+\frac{x-20}{10}-1+\frac{x-19}{11}-1=0\)
\(\frac{x-30}{8}+\frac{x-30}{9}+\frac{x-30}{10}+\frac{x-30}{11}=0\)
\(\left(x-30\right)\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)=0\)
x=30
Chúc bạn học tốt!!
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))
Bài 1:
a/ \(x\ne1;2\)
\(\frac{x-2}{\left(x-1\right)\left(x-2\right)}-\frac{7\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x-2-7x+7+1=0\)
\(\Leftrightarrow-6x+6=0\)
\(\Rightarrow x=1\) (loại)
Vậy pt vô nghiệm
b/ \(x\ne\frac{3}{2}\)
\(\frac{2x+3}{2x-3}-\frac{3}{2\left(2x-3\right)}-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{10\left(2x+3\right)}{10\left(2x-3\right)}-\frac{15}{10\left(2x-3\right)}-\frac{4\left(2x-3\right)}{10\left(2x-3\right)}=0\)
\(\Leftrightarrow20x+30-15-8x+12=0\)
\(\Leftrightarrow12x+27=0\)
\(\Rightarrow x=-\frac{9}{4}\)
c/ \(x\ne\pm1\)
\(\frac{x+1}{x-1}-\frac{4}{x+1}+\frac{3-x^2}{x^2-1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}+\frac{3-x^2}{x^2-1}=0\)
\(\Leftrightarrow x^2+2x+1-4x+4+3-x^2=0\)
\(\Leftrightarrow-2x+8=0\)
\(\Rightarrow x=4\)
Bài 1:
d/\(x\ne\pm3\)
\(\frac{x-1}{x+3}-\frac{x}{x-3}+\frac{7x-3}{x^2-9}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}-\frac{x\left(x+3\right)}{x^2-9}+\frac{7x-3}{x^2-9}=0\)
\(\Leftrightarrow x^2-4x+3-x^2-3x+7x-3=0\)
\(\Rightarrow0=0\)
Vậy pt có vô số nghiệm \(x\ne\pm3\)
e/ \(x\ne\pm1\)
\(\frac{1}{x+1}+\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}+\frac{3}{x^2-1}=0\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{x^2-1}=0\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Leftrightarrow x^2-2x+1+2+3x-3=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\left(l\right)\end{matrix}\right.\)
a đkxđ khi x khác 2 và -2 \(\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2-\left(x-2\right)^2}{x^2-4}=\frac{4}{x^2-4}\)
\(\Rightarrow\left(x+2\right)^2-\left(x-2\right)^2=4\)\(\Rightarrow\left(x+2-x+2\right)\left(x+2+x-2\right)=4\Rightarrow4\cdot2x=4\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)(thảo mãn)
b đkxđ khi x+3 khác 0 suy ra x khác -3
\(\frac{x^2-9}{x+3}=\frac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3=0\Rightarrow x=3\)(thảo mãn)