K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

20 tháng 4 2019

a) phương trình có a.c=3.(-8)=-24<0
vì a.c <0 nên phương trình có 2 nghiệm
b) phương trình có \(a.c=2004.\left(-1185\sqrt{5}\right)< 0\)
vì a.c<0 nên phương trình có 2 nghiệm
c) phương trình có \(a.c=3\sqrt{2}.\left(\sqrt{2}-\sqrt{3}\right)=6-3\sqrt{6}< 0\)
vì a.c<o nên phương trình có 2 nghiệm
d)phương trình có a.c=2010.(-m2)=-2010m2<0
vì a.c<0 nên phuong trình có 2 nghiệm

AH
Akai Haruma
Giáo viên
23 tháng 8 2018

Lời giải:

Đặt \(\sqrt[3]{4-\sqrt{15}}=m\)

Khi đó \(a=\frac{1}{m}+m\Rightarrow a^3-3a=\frac{1}{m^3}+\frac{3}{m}+3m+m^3-3(\frac{1}{m}+m)\)

\(=\frac{1}{m^3}+m^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}=4+\sqrt{15}+4-\sqrt{15}=8(*)\)

Đặt \(\sqrt[3]{\frac{25+\sqrt{621}}{2}}=n; \sqrt[3]{\frac{25-\sqrt{621}}{2}}=p\)

\(\Rightarrow n^3+p^3=25; np=\sqrt[3]{\frac{25^2-621}{4}}=1\)

\(\Rightarrow (n+p)^3=n^3+p^3+3np(n+p)=25+3(n+p)\)

Do đó:

\(b^3-b^2=\frac{1}{27}(1-n-p)^3-\frac{1}{9}(1-n-p)^2\)

\(=\frac{1}{27}[1-3(n+p)+3(n+p)^2-(n+p)^3]-\frac{1}{9}[1-2(n+p)+(n+p)^2]\)

\(=\frac{-2}{27}+\frac{n+p}{9}-\frac{(n+p)^3}{27}\)

\(=\frac{-2}{27}+\frac{n+p}{9}-\frac{25+3(n+p)}{27}=-1(**)\)

Từ \((*);(**)\Rightarrow a^3+b^3-b^2-3a+100=8+(-1)+100=107\)

23 tháng 8 2018

@Akai Haruma @Lightning Farron soyeon_Tiểubàng giải Nguyễn Huy Tú

15 tháng 7 2017

a) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}.\dfrac{196}{9}}=\sqrt{\dfrac{25}{81}}.\sqrt{\dfrac{16}{49}}.\sqrt{\dfrac{196}{9}}=\dfrac{5}{9}.\dfrac{4}{7}.\dfrac{14}{3}=\dfrac{40}{27}\)

b) \(\sqrt{3\dfrac{1}{16}.2\dfrac{14}{25}.2\dfrac{34}{81}}=\sqrt{\dfrac{49}{16}.\dfrac{64}{25}.\dfrac{196}{81}}=\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{64}{25}}.\sqrt{\dfrac{196}{81}}=\dfrac{7}{4}.\dfrac{8}{5}.\dfrac{14}{9}=\dfrac{196}{45}\)

c) \(\dfrac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.49}{81}}=\dfrac{\sqrt{64}.\sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}=\dfrac{56}{9}\)

d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}=\sqrt{21,6.810.\left(11^2-5^2\right)}=\sqrt{216.81.\left(11+5\right)\left(11-5\right)}=\sqrt{36^2.9^2.4^2}=36.9.4=1296\)

8 tháng 11 2019

Có.

Trình bày có vì:

Thay \(x=-8,y=-3\) vào hệ phương trìn h ta có :

\(\hept{\begin{cases}2.\left(-8\right)+0\left(-3\right)=-16\\3.\left(-8\right)-3.\left(-3\right)=-15\end{cases}}\)

Vậy cả hai phương trìn đều đúng 

Vậy \(\left(x-8,y=-3\right)\) thoả mãn hiệu phương trình

:3 #Hơi khó nhỉ Nhi mày thử xem lại coi tao cũng hỏi chị tao sương sương bài nay :3 xem lại nhé

8 tháng 11 2019

Linh: Dellll sai nhưng hơi tắt mày nhỉ??? :P

15 tháng 8 2018

Bài 1 : ĐK : \(x>3\) ; \(y>5\) ; \(z>4\)

\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)

\(\Leftrightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\left\{{}\begin{matrix}\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\dfrac{4\sqrt{x-3}}{\sqrt{x-3}}}=2\sqrt{4}=4\\\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge2\sqrt{\dfrac{9\sqrt{y-5}}{\sqrt{y-5}}}=2\sqrt{9}=6\\\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge2\sqrt{\dfrac{25\sqrt{z-4}}{\sqrt{z-4}}}=2\sqrt{25}=10\end{matrix}\right.\)

\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)\ge20\)

\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=4\\y-5=9\\z-4=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=14\\z=29\end{matrix}\right.\left(TM\right)\)

Vậy \(x=7\) ; \(y=14\) ; \(z=29\)

26 tháng 2 2016

Lấy tay ra tính là bt lí do

Duyệt đi

26 tháng 2 2016

1+1=2 bởi vì coi 1 là một người đứng ở điểm A bước lên một bước là công thêm 1 đơn vị còn nếu lùi xuống 1 bước có nghĩa là bớt đi 1 đơn vị 
=>1+1=2. 
C2:coi 1 là a 
coi 1 nữa là b 
Ta có: 
- (a-b)^2=0 
(a^2)-2ab+b^2=0 
a^2+b^2=2ab 
mà a=1, b=1. Ghép vào biểu thức trên. 
1^2+1^2=2x1x1 
1+1=2. 
Đó chính là lý do 1+1=2. 

a: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}{-x+9}\)

\(=\dfrac{5\left(\sqrt{x}-3\right)}{x-9}=\dfrac{5}{\sqrt{x}+3}\)

b: Để A<1 thì A-1<0
\(\Leftrightarrow5-\sqrt{x}-3< 0\)

=>2-căn x<0

=>căn x>2

=>x>4

3 tháng 7 2019

Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0

Ta có:  ∆  =  b 2  – 4ac, trong đó  b 2  > 0

Nếu -4ac > 0 thì  ∆  luôn lớn hơn 0.

Khi  ∆  > 0 nghĩa là phương trình có hai nghiệm phân biệt.

Áp dụng :

Phương trình 3 2 x 2  +  3 - 2 x +  2 - 3 = 0 có:

a = 3 2  , c =  2 - 3  nên ac < 0 (vì  2 < 3  )

Vậy phương trình có 2 nghiệm phân biệt.