Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Xét tam giác ABC có : A+B+C=180
=> ACB=180-A-B=40độ
2, Vì DE//BC nên ta có : góc ADE=DBF ( đồng vị )
Xét tam giác ADE và DBF có :
AD=DB
DE=BF
góc ADE=DBF
=> tam giác ADE=DBF (c.g.c)
b, vì tam giác ADE=DBF nên góc BDF=DAE ( hai góc đồng vị bằng nhau ) => DF//AC.
c, Xét tam giác ABC có : AD=BD và DF//AC => BF=FC
1) A + B + C = 180 độ
C = 180 độ - ( 60 độ + 80 độ )
C = 40 độ
2)
a) Xét t/giác EDA và FBD , có
Có góc EDA = góc FBD ( 2 đường ED // CB)
AD = DB ( D là trung điểm của AB )
FB = ED ( gt )
=> t/giác EDA = t/giác FBD ( c.g.c )
b) Ta có: góc A = góc FDB ( t/giác EDA = t/giác FBD)
mà chúng ở vị trí so le trong => FD // EA hay FD // CA
c) bí
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
Ta có hình vẽ:
A F B C D E a/ Trong tam giác ABC có:
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=1800 (tổng 3 góc của tam giác)
900 + 600 + \(\widehat{C}\) = 1800
=> \(\widehat{C}\) = 1800 - 900 - 600 = 300
Ta có: \(\widehat{B}\)=600, BD là phân giác góc B
=> \(\widehat{ABD}\)=\(\widehat{EBD}\)=300
b/ Xét tam giác ABD và tam giác EBD có:
BA = BE (GT)
\(\widehat{ABD}\)=\(\widehat{EBD}\) (GT)
BD : cạnh chung
Vậy tam giác ABD = tam giác EBD (c.g.c)
=> DA = DE (2 cạnh tương ứng)
c/ Xét tam giác BAD và tam giác FAD có:
AD: cạnh chung
AB = AF (GT)
\(\widehat{BAD}\)=\(\widehat{FAD}\) = 900
Vậy tam giác BAD = tam giác FAD (c.g.c)
=> tam giác BAD = tam giác FAD = EBD
Trong tam giác ABD có:
\(\widehat{BAD}\)+\(\widehat{ABD}\)+\(\widehat{BDA}\) = 1800
900 + 300 + \(\widehat{BDA}\) = 1800
=> \(\widehat{BDA}\) = 600
Vì tam giác BAD = tam giác FAD = tam giác EBD
nên \(\widehat{FDA}\)=\(\widehat{ADB}\)=\(\widehat{BDE}\)=600 (các góc tương ứng)
Ta có: \(\widehat{FDA}\)+\(\widehat{ADB}\)+\(\widehat{BDE}\)=600+600+600=1800
=> \(\widehat{FDE}\)=1800
hay E,D,F thẳng hàng (đpcm)
a)Xét ΔAMD và ΔCMB có :
góc AMB = góc CMD ( đối đỉnh)
AM = NC ( GT)
BM = MD ( GT)
--->ΔAMD = ΔCMB(c.g.c)
b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)
tạo ra hai góc so le trong bằng nhau
--->AD//BC
c)Xét ΔABC và ΔCDA có :
AC : cạnh chung
AD = BC (ΔAMD = ΔCMB)
góc CAD = góc ACB(ΔAMD = ΔCMB)
--->ΔABC = ΔCDA(c.g.c)
d)ta có AE + ED = AD
AF+ FC = BC
mà EF= BF; AD = BC
--->AE = FC
xét ΔAFC và ΔACE có :
AE = FC (CMT)
AC : cạnh chung
góc CAE = góc ACF (ΔAMD = ΔCMB)
--->ΔAFC = ΔCEA ( c.g.c)
--->góc AEC = góc AFC ( hai góc tương ứng)
--->góc AEC = góc AFC=90'
--->AF vuông góc với BC
a) Xét t/g AMD và t/g CMB có:
AM = CM (gt)
AMD = CMB ( đối đỉnh)
MD = MB (gt)
Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)
b) t/g AMD = t/g CMB (câu a)
=> ADM = CBM (2 góc tương ứng)
Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)
c) t/g AMD = t/g CMB (câu a)
=> AD = BC (2 cạnh tương ứng)
Xét t/g ABC và t/g CDA có:
BC = AD (gt)
ACB = CAD (so le trong)
AC là cạnh chung
Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)
d) Có: AD = BC (câu c)
DE = BF (gt)
Suy ra AD - DE = BC - BF
=> AE = CF
Mà AE // CF do AD // BC (câu b)
Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)
Lại có: CE _|_ AD (gt) => AF _|_ AD
Mà BC // AD (câu b) => AF _|_ BC (đpcm)
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((