K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

2.\(P=\frac{x+1}{2x+5}+\frac{x+2}{2x+4}+\frac{x+3}{2x+3}\)

        \(=\frac{x+1}{2x+5}+1+\frac{x+2}{2x+4}+1+\frac{x+3}{2x+3}+1-3\)

          \(=\frac{3x+6}{2x+5}+\frac{3x+6}{2x+4}+\frac{3x+6}{2x+3}-3\)

           \(=\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\)

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân vế với vế của 3 BĐT trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\)

Áp dụng BĐT \(\left(1\right)\)ta được:

\(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\ge\frac{9}{6x+12}\)

\(\Leftrightarrow\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\ge3\left(x+2\right).\frac{9}{6\left(x+2\right)}-3\)

\(\Leftrightarrow P\ge\frac{3}{2}\left(đpcm\right)\)

c1: giải các phương trinh sau : a) (2x+1)2 -2x -1=2 b) (x2 -3x )2 + 5(x2 -3x)+6=0 c) x2 -x -1)(x2 - x) -2=0 d) (5-2x)2 + 4x - 10 =0 e) (x2 + 2x +3)(x2 +2x+1)= 3 f) x(x-1)(x2-x+1)-6=0 c2: giải các phương trinh sau: a) \(\frac{7x+7}{x-1}=\frac{2}{3}\) b) \(\frac{2}{1-x}=\frac{1}{3-7x}\) c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\) d) \(\frac{14}{3x-12}+\frac{2-x}{x-4}=\frac{3}{8-2x}-\frac{5}{6}\) e) \(\frac{1}{x+2}+\frac{2}{x-2}=\frac{2}{x^2-4}\) c3: giải các phương...
Đọc tiếp

c1: giải các phương trinh sau :

a) (2x+1)2 -2x -1=2

b) (x2 -3x )2 + 5(x2 -3x)+6=0

c) x2 -x -1)(x2 - x) -2=0

d) (5-2x)2 + 4x - 10 =0

e) (x2 + 2x +3)(x2 +2x+1)= 3

f) x(x-1)(x2-x+1)-6=0

c2: giải các phương trinh sau:

a) \(\frac{7x+7}{x-1}=\frac{2}{3}\)

b) \(\frac{2}{1-x}=\frac{1}{3-7x}\)

c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\)

d) \(\frac{14}{3x-12}+\frac{2-x}{x-4}=\frac{3}{8-2x}-\frac{5}{6}\)

e) \(\frac{1}{x+2}+\frac{2}{x-2}=\frac{2}{x^2-4}\)

c3: giải các phương trinh và biểu diển tập nghiệm trên trục số

a) \(\frac{x-1}{2}-\frac{7x+3}{15}\le\frac{2x+1}{3}+\frac{3-2x}{-5}\)

b) \(\frac{2x+1}{2}-\frac{2x^2+3}{-4}>\frac{x\left(5-3x\right)}{-6}-\frac{4x+1}{-5}\)

c) \(\frac{4x-2}{3}-x+3\le\frac{1-5x}{4}\)

d) \(\frac{x+4+}{5}-x-5\ge\frac{x+3}{3}-\frac{x-2}{2}\)

c4: cho a>b ,hãy so sánh :

a) -3a+4 và -3b +4

b) 2+3a và 2+3b

c) 2a -3 và 2b -3

d) 2a -4 và 2b + 5

giải bài toán bằng cách lập phương trinh

bai1: hai ô tô cùng khởi hành từ hai bến cánh nhau 175 km để gặp nhau. xe 1 đi sớm hơn xe 2 là 1 giờ 30 phút với vận tốc 30kn/h .Hỏi sau mấy giờ hai xe gặp nhau ?

bai2: một người đi xe đạp từ tỉnh A đến tỉnh B sơm hơn 1 giờ. Tính vận tốc của mỗi xe ?biết rằng vận tốc xe máy gấp 2,5 vận tốc xe đạp .

0
16 tháng 12 2020

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm

22 tháng 3 2020

Bài 1 :

a, Ta có : \(\left(x+3\right)^3=x\left(x-4\right)\)

=> \(x^3+9x^2+27x+27=x^2-4x\)

=> \(x^3+9x^2+27x+27-x^2+4x=0\)

=> \(x^3+8x^2+31x+27=0\)

=> \(x\approx-1,27\)

Vậy phương trình có tập nghiệm là \(S=\left\{~-1.27\right\}\)

b, Ta có : \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

=> \(\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{4}{3}\)

=> \(x=1\)

Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

=> \(\frac{6\left(x-3\right)}{30}=\frac{180}{30}-\frac{10\left(1-2x\right)}{30}\)

=> \(6\left(x-3\right)=180-10\left(1-2x\right)\)

=> \(6x-18=180-10+20x\)

=> \(-14x=188\)

=> \(x=-\frac{94}{7}\)

Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{94}{7}\right\}\)

Bài 2 :

a, Ta có : \(x^2+4x-2xy-4y+y^2\)

= \(\left(x-y\right)^2+4\left(x-y\right)\)

= \(\left(x-y\right)\left(x-y+4\right)\)

b, Ta có : \(x\left(x-4\right)+\left(x-4\right)\left(2x+3\right)\)

\(=\left(x-4\right)\left(x+2x+3\right)\)

= \(=\left(x-4\right)\left(3x+3\right)\)

c, Ta có : \(x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

= \(\left(x-1-y\right)\left(x-1+y\right)\)

NV
17 tháng 5 2020

a/ \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+xy\right)\left(2+x^2+y^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow2+x^2+y^2+2xy+xy\left(x^2+y^2\right)\ge2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (luôn đúng)

b/ Để biểu thức xác định \(\Rightarrow x\ne0\Rightarrow x^2\ge1\)

\(4=\frac{y^2}{4}+x^2+\frac{1}{x^2}+x^2\ge\frac{y^2}{4}+2\sqrt{\frac{x^2}{x^2}}+1\ge\frac{y^2}{4}+3\)

\(\Rightarrow\frac{y^2}{4}\le1\Rightarrow y^2\le4\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\\y^2=4\end{matrix}\right.\)

\(y^2=0\Rightarrow2x^2+\frac{1}{x^2}=4\Rightarrow2x^4-4x^2+1=0\) (ko tồn tại x nguyên tm)

\(y^2=1\Rightarrow2x^2+\frac{1}{x^2}=3\Rightarrow2x^4-3x^2+1=0\Rightarrow x^2=1\)

\(\Rightarrow\left(x;y\right)=...\)

\(y^2=4\Rightarrow2x^2+\frac{1}{x^2}=0\Rightarrow\) ko tồn tại x thỏa mãn

17 tháng 5 2020

tks nha

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)