Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: TH1: m=-2
=>-2(-2-1)x+4<0
=>6x+4<0
=>x<-4/6(loại)
TH2: m<>-2
\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)
=4m^2-8m+4-16m-32
=4m^2-24m-28
Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)
b: TH1: m=3
=>5x-4>0
=>x>4/5(loại)
TH2: m<>3
Δ=(m+2)^2-4*(-4)(m-3)
\(=m^2+4m+4+16m-48=m^2+20m-44\)
Để bất phương trình vô nghiệm thì
\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)
Câu 1 : a/Δ Δ = (m+2)2 - 4(-1)(-4) = m2 +2m -12
ycbt <=> Δ > 0 <=> m2 +2m-12 > 0
<=> m < -1-\(\sqrt{13}\) ; m > -1+\(\sqrt{13}\)
Vậy giá trị cần tìm m ∈ (-∞; -1-\(\sqrt{13}\) ) U (-1+\(\sqrt{13}\) ; +∞)
b/ Δ = m2 +2m-12
ycbt <=> Δ < 0 <=> m2 +2m-12 < 0
<=> -1-\(\sqrt{13}\)<m< -1+\(\sqrt{13}\)
Câu 2 .
a/ Thay m=2 vào bpt ta được : 2x2+(2-1)x+1-2 >0
<=> 2x2 + x -1 > 0 <=> x < -1 ; x > \(\frac{1}{2}\)
Câu 1:
Có:
\(x^2+2(m-2)x+m>0\) \(\forall x>2\)
\(\Leftrightarrow x^2-4x+2mx+m>0\) \(\forall x>2\)
\(\Leftrightarrow (x^2-4x)+m(2x+1)>0\) \(\forall x>2\)
\(\Leftrightarrow m> \frac{4x-x^2}{2x+1}\) \(\forall x>2\)
\(\Leftrightarrow m> \max(\frac{4x-x^2}{2x+1})\) với \(x>2\) \((*)\)
\(f(x)=\frac{4x-x^2}{2x+1}\Rightarrow f'(x)=\frac{-2(x^2+x-2)}{(2x+1)^2}\)
Lập bảng biến thiên suy ra \(f(x)=\frac{4x-x^2}{2x+1}< f(2)=\frac{4}{5}\)
\(\Leftrightarrow f(x)_{\max}< \frac{4}{5}\)
Do đó để $(*)$ thỏa mãn thì \(m\geq \frac{4}{5}\)
Câu 2:
Để PT có hai nghiệm pb \(\Rightarrow \Delta'=4-m^2>0\Leftrightarrow -2< m< 2(1)\)
Khi đó áp dụng hệ thức Viete với $x_1,x_2$ là hai nghiệm của pt đã cho:
\(\left\{\begin{matrix} x_1+x_2=4\\ x_1x_2=m^2\end{matrix}\right.\)
Khi PT chỉ có một nghiệm lớn hơn $3$ thì có nghĩa nghiệm còn lại phải nhỏ hơn $3$
\(\Rightarrow (x_1-3)(x_2-3)< 0\)
\(\Leftrightarrow x_1x_2-3(x_1+x_2)+9< 0\)
\(\Leftrightarrow m^2-12+9< 0\Leftrightarrow m^2<3\Leftrightarrow -\sqrt{3}< m< \sqrt{3}(2)\)
Từ \((1); (2)\Rightarrow -\sqrt{3}< m< \sqrt{3}\)
1.
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)
\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)
2.
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)
Không tồn tại m thỏa mãn
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2
a/ Để BPT nghiệm đúng với mọi x:
\(\left\{{}\begin{matrix}a=m-1>0\\\Delta'=\left(m-1\right)^2+\left(m-1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\left(m-1\right)\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>1\\0\le m\le1\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
b/ Để BPT vô nghiệm
\(\Leftrightarrow\left(m-4\right)x^2-5\left(m-4\right)x-2\left(m-4\right)\le0\) nghiệm đúng \(\forall x\)
- Với \(m=4\) BPT trở thành \(0\le0\) (đúng)
- Với \(m\ne4\):
Hệ điều kiện:
\(\left\{{}\begin{matrix}a=m-4< 0\\\Delta=25\left(m-4\right)^2+8\left(m-4\right)^2\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy \(m=4\) thì BPT vô nghiệm