K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a/ (x2-1)(x2+2x) 

=x4+2x3-x2-2x

b/ (2x-1)(3x+2)(3-x)

=(6x2+x-2)(3-x)

=-6x3+17x2+x-6

c/ (x+3)(x2+3x-5)

=x3+3x2-5x+3x2+9x-15

=x3+6x2+4x-15

d/ (x+1)(x2-x+1)

=x3+1 dùng HĐT

e/ (2x3-3x-1)(5x+2)  

=10x4-15x2-5x+4x3-6x-2

=10x4+4x3-15x2-11x-2

f/ (x2-2x+3)(x-4)

=x3-2x2+3x-4x2+8x-12

=x3-6x2+11x-12

 

10 tháng 8 2016

đừng làm tắt quá nhé, hơi thôi cũng đk

a) Ta có: \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

b) Ta có: \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=\left(6x^2+x-2\right)\left(3-x\right)\)

\(=18x^2-6x^3+3x-x^2-6+2x\)

\(=-6x^3+17x^2+5x-6\)

c) Ta có: \(\left(x+3\right)\left(x^2+3x-5\right)\)

\(=x^3+3x^2-5x+3x^2+9x-15\)

\(=x^3+6x^2+4x-15\)

d) Ta có: \(\left(x+1\right)\left(x^2-x+1\right)\)

\(=x^3+1\)

e) Ta có: \(\left(2x^3-3x-1\right)\left(5x+2\right)\)

\(=10x^4+4x^3-15x^2-6x-5x-2\)

\(=10x^4+4x^3-15x^2-11x-2\)

f) Ta có: \(\left(x^2-2x+3\right)\left(x-4\right)\)

\(=x^3-4x^2-2x^2+8x+3x-12\)

\(=x^3-6x^2+11x-12\)

g) Ta có: \(\left(4x-1\right)\left(3x+1\right)-5x\left(x-3\right)-\left(x-4\right)\left(x-3\right)\)

\(=12x^2+4x-3x-1-5x^2+15x-\left(x^2-7x+12\right)\)

\(=7x^2+16x-1-x^2+7x-12\)

\(=6x^2+23x-23\)

h) Ta có: \(\left(5x-2\right)\left(x+1\right)-3x\left(x^2-x-3\right)-2x\left(x-5\right)\left(x-4\right)\)

\(=5x^2+5x-2x-2-3x^3+3x^2+9x-2x\left(x^2-9x+20\right)\)

\(=-3x^3+8x^2+12x-2-2x^3+18x^2-40x\)

\(=-5x^3+26x^2-28x-2\)

28 tháng 8 2016

1.a) \(\Leftrightarrow\) 3x+10-2x =0

  \(\Leftrightarrow\text{ 3x-2x=-10}\)

   \(\Leftrightarrow x=-10\)

b) coi lại có thiếu ngoặc ko nhé

cứ nhân vào dấu ngoặc rồi làm như thường

       

24 tháng 12 2017

https://giaibaitapvenha.blogspot.com/2017/12/en-voi-do-homework-for-you-e-trai.html

7 tháng 8 2020

a, (x4-2x3+2x-1):(x2-1) = \(\frac{\left(x^4-1\right)-\left(2x^3-2x\right)}{x^2-1}\) 

                                     = \(\frac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)                                                                                                                                              =\(\frac{\left(x^2-1\right)\left(x^2+1-2x\right)}{x^2-1}\)

                                      = \(x^2+1-2x\)\(\left(x-1\right)^2\)

b, (8x3-6x2-5x+3):((4x+3) 

24 tháng 6 2018

. Làm như bt thôi mà bạn :) , áp dụng hằng đẳng thức cùng vs nhân chi tr - cộng trừ sau là ra mà bạn !!!

25 tháng 6 2018

a) (2x+3)*(4x+5)

=2x(4x+5)+3(4x+5)

=2x*4x+2x*5+3*4x+3*5

=8x^2+10x+12x+15

=8x^2+(10x+12x)+15

=8x^2+22x+15

b) (x-2)*(3x-4)

=x(3x-4)-2(3x-4)

=x*3x+x*-4-2*3x-2*-4

=3x^2-4x-6x+8

=3x^2+(-4x-6x)+8

=3x^2-10x+8

a) Ta có: \(-3x^2\left(2x^2-\frac{1}{3}x+2\right)\)

\(=-6x^4+x^3-6x^2\)

b) Ta có: \(2xy^2\left(x-3y+xy\right)\)

\(=2x^2y^2-6xy^3+2x^2y^3\)

c) Ta có: \(\left(5x^2-4x\right)\left(x-2\right)\)

\(=5x^3-10x^2-4x^2+8x\)

\(=5x^3-14x^2+8x\)

d) Ta có: \(-\left(2-x\right)\left(2x+3\right)\)

\(=\left(x-2\right)\left(2x+3\right)\)

\(=2x^2+3x-4x-6\)

\(=2x^2-x-6\)

e) Ta có: \(\left(3x^3-2x^2+x\right):\left(-2x\right)\)

\(=\frac{-3}{2}x^2+x-\frac{1}{2}\)

f) Ta có: \(\left(15x^2y^2-21x^3y+2x^2y\right):\left(3x^2y\right)\)

\(=5y-7x+\frac{2}{3}\)

g) Hỏi đáp Toán

28 tháng 3 2020

Copy có khác, ko đọc đc j!!! heheʌl

Câu 3:

1)

a) Ta có: 3x−2=2x−33x−2=2x−3

⇔3x−2−2x+3=0⇔3x−2−2x+3=0

⇔x+1=0⇔x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y

⇔27+2y=27+4y⇔27+2y=27+4y

⇔27+2y−27−4y=0⇔27+2y−27−4y=0

⇔−2y=0⇔−2y=0

hay y=0

Vậy: y=0

c) Ta có: 7−2x=22−3x7−2x=22−3x

⇔7−2x−22+3x=0⇔7−2x−22+3x=0

⇔−15+x=0⇔−15+x=0

hay x=15

Vậy: x=15

d) Ta có: 8x−3=5x+128x−3=5x+12

⇔8x−3−5x−12=0⇔8x−3−5x−12=0

⇔3x−15=0⇔3x−15=0

⇔3(x−5)=0⇔3(x−5)=0

Vì 3≠0

nên x-5=0

hay x=5

Vậy: x=5

29 tháng 3 2020

a) 3x - 2 = 2x - 3

\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0

\(\Leftrightarrow\) x + 1 = 0

\(\Rightarrow\) x = -1

b) 3 - 4y + 24 + 6y = y + 27 + 3y

\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0

\(\Leftrightarrow\) -2y = 0

\(\Rightarrow\) y = 0

c)7 - 2x = 22 - 3x

\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0

\(\Leftrightarrow\) -15 + x = 0

\(\Rightarrow\) x = 15

d) 8x - 3 = 5x + 12

\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0

\(\Leftrightarrow\)3x -15 = 0

\(\Leftrightarrow\) 3x = 15

\(\Rightarrow\) x = 5

e) x - 12 + 4x = 25 + 2x - 1

\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0

\(\Leftrightarrow\) 3x - 36 = 0

\(\Leftrightarrow\) 3x = 36

\(\Rightarrow\) x = 12

f ) x + 2x + 3x - 19 = 3x + 5

\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0

\(\Leftrightarrow\)3x - 24 = 0

\(\Leftrightarrow\) 3x = 24

\(\Rightarrow\) x = 8

g) 11+ 8x - 3 = 5x - 3 +x

\(\Leftrightarrow\)8x + 8 = 6x - 3

\(\Leftrightarrow\)8x - 6x = -3 - 8

\(\Leftrightarrow\)2x = -11

\(\Rightarrow\)x = \(-\frac{11}{2}\)

h) 4 - 2x +15 = 9x + 4 -2

\(\Leftrightarrow\)19 - 2x = 7x + 4

\(\Leftrightarrow\)-2x - 7x = 4 - 19

\(\Leftrightarrow\)-9x = -15

\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)

5 tháng 9 2020

a, \(\left(x+1\right)\left(x-2\right)=x^2-2x+x-2=x^2-x-2\)

b, \(-7x^2\left(3x-4y\right)=-21x^3+28x^2y\)

c, \(\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2=x^2-2x+4x-8-\left(x^2-6x+9\right)\)

\(=x^2+2x-8-x^2+6x-9=8x-17\)

5 tháng 9 2020

Bạn ơi bạn giúp mình hết đc k??

1 tháng 4 2020

a) (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3

<=> x3 - 6x2 + 12x - 8 + 9x2 - 1 = x3 + 3x2 + 3x + 1

<=> x3 + 3x2 + 12x - x3 - 3x2 - 3x = 1 + 9

<=> 9x = 10

<=> x = 10/9

vậy S = {10/9}

b) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)

 <=> x3 - 3x2 + 3x  - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22

<=> -5x2 + 2x - 10x + 5x2 + 11x = -22 + 1

<=> 3x = -21

<=> x = -7

Vậy S = {-7}

c) (x + 1)(2x - 3) = (2x - 1)(x + 5)

<=> 2x2 - x - 3 = 2x2 + 9x - 5

<=> 2x2 -x - 2x2 - 9x = -5 + 3

<=>-10x = -2

<=> x = 1/5 Vậy S = {1/5}

1 tháng 4 2020

d) (x - 1) - (2x - 1) = 9 - x

<=> x - 1 - 2x + 1 = 9 - x

<=> -x + x = 9

<=> 0x = 9 (vô nghiệm)

=> pt vô nghiệm

e) (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2

<=> x2 + x - 12 - 6x + 4 = x2 - 8x + 16

<=> x2 - 5x - x2 + 8x = 16 + 8

<=> 3x = 24

<=> x = 8

Vậy S = {8}

g) (x + 1)(x2 - x + 1) - 2x = x(x + 1)(x - 1)

<=> x3 + 1 - 2x = x3 - x

<=> x3 - 2x - x3 + x = -1

<=> -x = -1 <=> x = 1

Vậy S = {1}