K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2023

1

ĐK: \(x\in R\)

\(\sqrt{x^2-4x+4}=\sqrt{4x^2-12+9}\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(2x-3\right)^2}\\ \Leftrightarrow\left|x-2\right|=\left|2x-3\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\\2-x=2x-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)

2

ĐK: \(\left\{{}\begin{matrix}x+2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\Leftrightarrow x\ge1\)

Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow t^2=x-1\Rightarrow x=t^2+1\)

\(\sqrt{x+2\sqrt{x-1}}=2\\ \Leftrightarrow\sqrt{t^2+2t+1}=2\\ \Leftrightarrow\sqrt{\left(t+1\right)^2}=2\left(1\right)\)

Do có \(t\ge0\) nên \(\left(1\right)\Leftrightarrow t+1=2\Leftrightarrow t=2-1=1\)

\(\Rightarrow x=t^2+1=1^2+1=2\) (thỏa mãn)

1: =>|2x-3|=|x-2|

=>2x-3=x-2 hoặc 2x-3=-x+2

=>x=1 hoặc 3x=5

=>x=5/3 hoặc x=1

2: \(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

=>căn x-1+1=2

=>căn x-1=1

=>x-1=1

=>x=2

18 tháng 8 2019

a)...ghi lại đề...

\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-2}^2=1^2\)

\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))

\(\Leftrightarrow x=3\)

\(\)

18 tháng 8 2019

\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Rightarrow x^2-3x+2=x-1\)

\(\Rightarrow x^2-4x+3=0\)

\(\Rightarrow x^2-x-3x+3=0\)

\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy..........

AH
Akai Haruma
Giáo viên
19 tháng 8 2019

a)

ĐK: $x\geq 2$

PT \(\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}\)

\(\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1(\text{loại vì x}\geq 2)\\ \sqrt{x-2}=1\end{matrix}\right.\)

\(\Rightarrow x=1^2+2=3\) là nghiệm duy nhất thỏa mãn

b)

ĐK: $x\in\mathbb{R}$

Bình phương 2 vế:

\(\Rightarrow x^2-4x+4=4x^2-12x+9\)

\(\Leftrightarrow (x-2)^2=(2x-3)^2\)

\(\Leftrightarrow (x-2)^2-(2x-3)^2=0\Leftrightarrow (x-2-2x+3)(x-2+2x-3)=0\)

\(\Leftrightarrow (-x+1)(3x-5)=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\) (đều thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
19 tháng 8 2019

c)

ĐKXĐ: $x\geq 3$

PT \(\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}\)

\(\Leftrightarrow (x-2)(x-3)=x-2\) (bình phương 2 vế không âm)

\(\Leftrightarrow (x-2)(x-3-1)=0\)

\(\Rightarrow \left[\begin{matrix} x-2=0\\ x-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2(\text{loại vì x}\geq 3)\\ x=4\end{matrix}\right.\)

Vậy $x=4$

d)

ĐK: $x\in\mathbb{R}$

PT \(\Leftrightarrow 4x^2-4x+1=x^2-6x+9\) (bình phương 2 vế không âm)

\(\Leftrightarrow (2x-1)^2=(x-3)^2\Leftrightarrow (2x-1)^2-(x-3)^2=0\)

\(\Leftrightarrow (2x-1-x+3)(2x-1+x-3)=0\)

\(\Leftrightarrow (x+2)(3x-4)=0\Rightarrow \left[\begin{matrix} x+2=0\\ 3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\) (đều thỏa mãn)

Vậy.........

Y
22 tháng 5 2019

a) \(\Leftrightarrow\sqrt{\left(x+3\right)^2}=4\)

\(\Leftrightarrow\left|x+3\right|=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5x+3\)

\(\Leftrightarrow\left|2x-1\right|=5x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x+3\ge0\\\left[{}\begin{matrix}2x-1=5x+3\\2x-1=-5x-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{5}\\\left[{}\begin{matrix}x=-\frac{4}{3}\left(KTM\right)\\x=-\frac{2}{7}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

22 tháng 5 2019

a \(\sqrt{x^2+6x+9}=4\Leftrightarrow\sqrt{\left(x+3\right)^2=4}\)

\(\Leftrightarrow x+3=4\)

\(\Rightarrow x=1\)

10 tháng 5 2018

1000 bang 2

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

1: Ta có: \(\sqrt{4x^2-12x+9}=3-2x\)

\(\Leftrightarrow\left(2x-3\right)^2=\left(3-2x\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(3-2x\right)^2=0\)

\(\Leftrightarrow\left[\left(2x-3\right)-\left(3-2x\right)\right]\left[\left(2x-3\right)+\left(3-2x\right)\right]=0\)

\(\Leftrightarrow\left(2x-3-3+2x\right)\left(2x-3+3-2x\right)=0\)

\(\Leftrightarrow\left(4x-6\right)\cdot0=0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

2) Ta có: \(\sqrt{x^2-2\cdot\sqrt{2}\cdot x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8-2\cdot2\sqrt{2}\cdot1+1}-\sqrt{1+2\cdot1\cdot\sqrt{2}+2}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\left|\sqrt{8}-1\right|-\left|1+\sqrt{2}\right|\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8}-1-1-\sqrt{2}\)

\(\Leftrightarrow\left|x-\sqrt{2}\right|=\sqrt{2}-2\)(*)

Trường hợp 1: \(x\ge\sqrt{2}\)

(*)\(\Leftrightarrow x-\sqrt{2}=\sqrt{2}-2\)

\(\Leftrightarrow x-\sqrt{2}-\sqrt{2}+2=0\)

\(\Leftrightarrow x-2\sqrt{2}+2=0\)

\(\Leftrightarrow x=2\sqrt{2}-2\)(loại)

Trường hợp 2: \(x< \sqrt{2}\)

(*)\(\Leftrightarrow\sqrt{2}-x=\sqrt{2}-2\)

\(\Leftrightarrow\sqrt{2}-x-\sqrt{2}+2=0\)

\(\Leftrightarrow2-x=0\)

hay x=2(loại)

Vậy: S=∅

16 tháng 12 2020

\(1.4x^2-12x+9=9-12x+4x^2\)

\(0x=0\)

Pt tm với mọi x