Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vân tốc, thời gian ô tô lần lượt là x;y ( x;y > 0 )
Theo bài ra ta có hpt
\(\left\{{}\begin{matrix}xy=120\\\left(x-4\right)\left(y+\dfrac{5}{6}\right)=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=120\\xy+\dfrac{5x}{6}-4y-\dfrac{10}{3}=120\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5x}{6}-4y-\dfrac{10}{3}=0\\y=\dfrac{120}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5x}{6}-\dfrac{480}{x}-\dfrac{10}{3}=0\\y=\dfrac{120}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\approx26\\y=\dfrac{60}{13}\end{matrix}\right.\)
vân tốc xe máy là x - 4 = 26 - 4 = 22 km/h
Gọi vận tốc xe máy là x(km/h) ; (x > 0)
=> Vận tốc ô tô là x + 4 (km/h)
Thời gian đi của xe máy : \(\dfrac{120}{x}\left(h\right)\)(1)
Thời gian đi của ô tô : \(\dfrac{120}{x+4}\)(h) (2)
Vì ô tô đến trước xe máy 50 phút = 5/6 giờ (3)
Từ (1)(2)(3) => Phương trình : \(\dfrac{120}{x}-\dfrac{120}{x+4}=\dfrac{5}{6}\)
<=> \(\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{1}{144}\)
<=> \(\dfrac{4}{x\left(x+4\right)}=\dfrac{1}{144}\)
<=> x2 + 4x - 576 = 0
<=> \(\left(x+2-\sqrt{580}\right)\left(x+2+\sqrt{580}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{580}-2\\x=-\sqrt{580}-2\left(\text{loại}\right)\end{matrix}\right.\Leftrightarrow x=\sqrt{580}-2\)Vận tốc xe máy : \(\sqrt{580}-2\)(km/h) ;
Vận tốc ô tô \(\sqrt{580}+2\)(km/h)
Vận tốc của ô tô là v, vận tốc của xe máy là m.
Theo đề bài, vận tốc của ô tô lớn hơn vận tốc của xe máy là 20km/h.
Ta có thể đặt thời gian đi của ô tô là t và thời gian đi của xe máy là t + 0.5 (30 phút = 0.5 giờ).
Vận tốc của ô tô là v = 60 / t và vận tốc của xe máy là m = 60 / (t + 0.5).
Vận tốc của ô tô lớn hơn vận tốc của xe máy 20km/h, ta có phương trình:
v - m = 20.
Thay v = 60 / t và m = 60 / (t + 0.5) vào phương trình trên, ta có:
60 / t - 60 / (t + 0.5) = 20.
Giải phương trình trên, ta có thể tính được giá trị của t. Sau đó, thay t vào công thức v = 60 / t và m = 60 / (t + 0.5), ta có thể tính được vận tốc của mỗi xe.
Gọi \(v_1;v_2\) lần lượt là vận tốc của ô tô và xe máy (km/h)
\(t\) là thời gian xe ô tô đi đến AB
Ta có :
\(\left\{{}\begin{matrix}v_1=\dfrac{s}{t}=\dfrac{60}{t}\left(1\right)\\v_2=\dfrac{s}{t}=\dfrac{60}{t+0,5}\left(2\right)\end{matrix}\right.\)
mà \(v_1-v_2=20\)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{60}{t}-\dfrac{60}{t+0,5}=20\)
\(\Leftrightarrow60\left(\dfrac{1}{t}-\dfrac{1}{t+0,5}\right)=20\)
\(\Leftrightarrow3.\dfrac{0,5}{t\left(t+0,5\right)}=1\)
\(\Leftrightarrow t\left(t+\dfrac{1}{2}\right)=\dfrac{3}{2}\)
\(\Leftrightarrow t^2+\dfrac{t}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow2t^2+t-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\) \(\Leftrightarrow t=1\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{60}{1}=60\\v_2=60-20=40\end{matrix}\right.\) (km/h)
Gọi vận tốc của xe máy và ô tô lần lượt là: x,y (km/h) (x,y>0)
Khi khởi hành cùng lúc, quãng đường xe máy đi được đến khi gặp nhau là: 120 (km)
Khi khởi hành cùng lúc, thời gian xe máy đi được đến khi gặp nhau là: \(\frac{120}{x}\left(h\right)\)
Khi khởi hành cùng lúc, quãng đường ô tô đi được đến khi gặp nhau là:
200-120=80 (km)
Khi khởi hành cùng lúc, thời gian ô tô đi được đến khi gặp nhau là: \(\frac{80}{y}\left(h\right)\)
Vì 2 xe khởi hành cùng lúc nên đến khi gặp nhau 2 xe trong khoảng thời gian như nhau nên :
\(\frac{120}{x}=\frac{80}{y}\left(1\right)\)
Khi xe máy khởi hành sau 1 giờ, quãng đường xe máy đi được đến khi gặp nhau là:
120-24=96 (km)
Khi xe máy khởi hành sau 1 giờ, thời xe máy đi được đến khi gặp nhau là: \(\frac{96}{x}\left(h\right)\)
Khi xe máy khởi hành sau 1 giờ, quãng đường ô tô đi được đến khi gặp nhau là:
200-96=104 (km)
Khi xe máy khởi hành sau 1 giờ, thời ô tô đi được đến khi gặp nhau là:\(\frac{104}{y}\left(h\right)\)
Vì xe máy khởi hành sau 1 giờ nên ta có :
\(\frac{96}{x}=\frac{104}{y}-1\left(2\right)\)
Ta có hệ phương trình:
\(\hept{\begin{cases}\frac{120}{x}=\frac{80}{y}\\\frac{96}{x}=\frac{104}{y}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{80}{120y}=\frac{2}{3y}\\96.\frac{2}{3y}=\frac{104-y}{y}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{2}{3y}\\\frac{64}{y}=\frac{104-y}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{2}{3y}\Rightarrow x=1:\frac{2}{120}=60\\y=104-64=40\end{cases}}\)
Vậy vận tốc của xe máy là 60km/h và vận tốc của ô tô là 40km/h.
Gọi vận tốc của xe máy là x ; vận tốc của ô tô là y ( x, y >0, km/h)
+) Hai xe khởi hành cùng 1 lúc gặp nhau tại C cách A 120 km => C cách B : 200 - 120 = 80 km
=> Thời gian xe máy đi được: \(\frac{120}{x}\)(h)
Thời gian ô tô đi được là: \(\frac{80}{y}\)(h)
Vì hai xe xuất phát cùng 1 nên thời gian đi được của hai xe bằng nhau
do đó: \(\frac{120}{x}=\frac{80}{y}\)<=> \(120.\frac{1}{x}-80.\frac{1}{y}=0\)(1)
+) Xe máy khởi hành sau ô tô 1 giờ:
Vì xe máy khởi hành sau nên D sẽ cách A 120 - 24 = 96 (km) và D cách B : 80 + 24 = 104 (km)
=> Thời gian xe máy đi được là: \(\frac{96}{x}\)(h)
Thời gian ô tô đi được là: \(\frac{104}{y}\)(h)
Do đó: \(\frac{96}{x}+1=\frac{104}{y}\)
<=> \(96.\frac{1}{x}-104.\frac{1}{y}=-1\)(2)
Từ (1); (2) => \(\hept{\begin{cases}\frac{1}{x}=\frac{1}{60}\\\frac{1}{y}=\frac{1}{40}\end{cases}}\)<=> \(\hept{\begin{cases}x=60\\y=40\end{cases}}\)
Vậy vận tốc xe máy là 60km/h; vận tốc ô tô là 40 km/h
Đề chưa đủ em