Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{1)}\)
\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)
\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)
\(f\left(3\right)=3^2-5\)
\(\text{2)}\)
\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)
\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)
\(\text{3)}\)
\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)
\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)
\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)
a) f(-3)=(-3)^2-4.(-3)=9+12=21 ....(cho nao co x thi thay bang (-3) vao vay thoi!
b) f(x)=0=> x^2-4x=0<=>x(x-4)=0
\(\orbr{\begin{cases}x=0\\x-4=0=>x=4\end{cases}}\)
ham f(x) =0 khi x=0; x=4
Y=f(x)=x^2-4x
F(3)=3^2-4.3
F(3)=9-12=-3
Vậy f(3)=-3
F(x)=0
=>x^2-4.x=0
Mình chỉ biết tới đó thôi, xin lỗi bạn nha
a) \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=2x+1\)
b) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)
\(\Leftrightarrow\)\(2x+1=0\)
\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
Bài 1:
a) \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(A=\frac{1}{3}\cdot\frac{2013}{4030}=\frac{671}{4030}\)
Bài 2:
ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)
\(=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Bài 3:
a) f(1) = 4/1 = 4
=> f(1) = 4
g(-1) = (-1)^2 = 1
=> g(-1) = 1
h(-5) = -2.(-5)^2 - 5/(-5) = -2.25 + 1 = -50 + 1 = -49
=> h(-5) = -49
b) ta có: k(x)=f(x)+g(x)+h(x)
=> k(x) = 4/x + x^2 -2x^2 - 5/x
k(x) = - (5/x - 4/x) - (2x^2-x^2)
k(x) = -1/x - x
\(k_{\left(x\right)}=\frac{-1}{x}-\frac{x.x}{x}=\frac{-1-x^2}{x}\)
c) Để k(x) = 0
=> -1-x^2/x = 0 ( x khác 0)
=> -1-x^2 = 0
=> x^2 = -1
=> không tìm được x
Bài 4:
a) Xét tam giác ABC vuông tại A
có: góc B + góc C = 90 độ ( 2 góc phụ nhau)
thay số: 60 độ + góc C = 90 độ
góc C = 90 độ - 60 độ
góc C = 30 độ
=> AB = BC/2 ( cạnh đối diện với góc 30 độ)
thay số: 5 = BC/2
=> BC = 5.2
=> BC = 10 cm
Xét tam giác ABC vuông tại A
có: AC^2 + AB^2 = BC^2 ( py - ta - go)
thay số: AC^2 + 5^2 = 10^2
AC^2 + 25 = 100
AC^2 = 75
\(\Rightarrow AC=\sqrt{75}\) cm