Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(-\(\dfrac{1}{2}\))= - \(\dfrac{1}{2}\)+1=\(\dfrac{1}{2}\)
f(0)=0+1=1
f(-1)=-1+1=0
b) f(x)=0 <=> x+1=0 <=>x=-1
f(x)=2 <=> x+1=2 <=>x=1
c) với điểm A(\(\dfrac{3}{4}\);\(\dfrac{-1}{2}\)) thay vào hàm số ta có -2*\(\dfrac{3}{4}\)+1=\(\dfrac{-1}{2}\)=\(\dfrac{-1}{2}\)
=> điểm A có thuộc đồ thị hàm số trên
làm tương tự vs các điểm còn lại nha bạn !
Để hàm số xác định trên R
\(\Leftrightarrow x^2-6x+a-2=0\) vô nghiệm
\(\Leftrightarrow\Delta'=9-\left(a-2\right)< 0\Leftrightarrow11-a< 0\Rightarrow a>11\)
a/ Miền xác định của hàm số là miền đối xứng
\(f\left(-x\right)=\frac{-x+1}{\sqrt[3]{\left(-x\right)^3+x}}=\frac{x-1}{\sqrt[3]{x^3-x}}\)
Hàm không chẵn không lẻ
b/ Miền xác định của hàm số là miền đối xứng
\(f\left(-x\right)=\sqrt{1-\left(-x\right)}+\sqrt{1+\left(-x\right)}=\sqrt{1+x}+\sqrt{1-x}=f\left(x\right)\)
Hàm là hàm chẵn
Bài 2:
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge a\\x\ge\frac{a+1}{2}\end{matrix}\right.\)
Để hàm số xác định trên khoảng đã cho
\(\Rightarrow\left\{{}\begin{matrix}a\le0\\\frac{a+1}{2}\le0\end{matrix}\right.\) \(\Rightarrow a\le-1\)
a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}
b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).
Vậy tập xác định D = \([-2;+\infty)/1\)
y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)
suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm
\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)
\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)
ĐKXĐ:
a/ \(\left\{{}\begin{matrix}x\ge1\\4-x^2\ge0\\x\ne2\\x\ne-3\end{matrix}\right.\) \(\Rightarrow1\le x< 2\)
b/ \(\left\{{}\begin{matrix}2-x\ge0\\x^2-5x+4\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ne1\\x\ne5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ne1\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}2-3x\ge0\\1+2x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le\frac{2}{3}\\x>-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le\frac{2}{3}\)
Câu 6:
a: A={-1;1;3}
b: X={-1;1}; X={-1;1;3}; X={-1;3}
Câu 5:
Mệnh đề này sai vì chẳng có giá trị x là số hữu tỉ nào để \(x^2=2\) hết
Mệnh đề phủ định là: \(\overline{A}:\forall x\in Q,x^2< >2\)
ĐKXĐ: \(\left\{{}\begin{matrix}-2x+3k-1\ge0\\x+k\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le\frac{3k-1}{2}\\x\ne-k\end{matrix}\right.\)
Để hàm số xác định với \(x< -2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3k-1}{2}\ge-2\\-k\ge-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k\ge-1\\k\le2\end{matrix}\right.\) \(\Rightarrow-1\le k\le2\)
Có 4 giá trị k thỏa mãn
bài 2
f(x) =|...|
ghép g(x) =x^2 -2x-3
và -(x^2 -2x-3)
m<0 vô nghiệm
m=0 2 nghiệm
m=4 3 nghiệm
0<n<4 4 nghiệm
* Với m= 3 thì phương trình đã cho trở thành: x2 – 6x + 1= 0.
Phương trình này có 2 nghiệm x 1 = 3 + 2 2 ; x 2 = 3 - 2 2 nên x 1 - x 2 = 4 2
* Với m= 2 thì phương trình đã cho trở thành: x2 – 4x = 0.
Phương trình này có 2 nghiệm là x1 =0 và x2 = 4 nên |x1 – x2| = 4
* Với m= 1 thì phương trình đã cho trở thành: x2 – 2x - 1= 0.
Phương trình này có 2 nghiệm x 1 = 1 + 2 ; x 2 = 1 - 2 nên x 1 - x 2 = 2 2
* Phương trình đã cho có:
∆ ' = m 2 - m - 2 = m 2 - m + 2 = m 2 - 2 . 1 2 . m + 1 4 + 7 4 = m - 1 4 2 + 7 4 > 0 ∀ m
Do đó, không có giá trị nào của m để ∆’ = 0 hay không có giá trị nào của m để phương trình đã cho có nghiệm kép.
Chọn D.