Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)
\(\left(2x-1\right)^2\left(1-3\right)=0\)
\(\left(2x-1\right)^2\cdot\left(-2\right)=0\)
\(\Rightarrow\text{ }\left(2x-1\right)^2=0\)
\(2x-1=0\)
\(2x=0+1=1\)
\(x=\frac{1}{2}\)
1) \(\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)
=> \(\left(2x-1\right)^2\left(1-3\right)=0\)
=> \(\left(2x-1\right)^2.\left(-2\right)=0\)
=> \(\left(2x-1\right)^2=0\)
=> \(2x-1=0\)
=> \(2x=1\)
=> \(x=1:2=\frac{1}{2}\)
a: =>6x-3x^2-5=4-3x^2-2
=>6x-5=2
=>6x=7
=>x=7/6
b: =>20x+5-12x^2-3x=6x^2-10x+3x-5
=>-12x^2+17x+5-6x^2+7x+5=0
=>-18x^2+24x+10=0
=>x=5/3 hoặc x=-1/3
\(\left(2x-5\right)\left(x-3\right)+\left(2x-5\right)^2=0\)
\(\Rightarrow\left(2x-5\right)\left(x-3+2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(3x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\3x-8=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{8}{3}\end{cases}}\)
\(\frac{3x-5}{4}+\frac{2x-3}{6}=\frac{x}{3}-1\)
\(\Leftrightarrow\frac{18x-30+8x-12}{24}=\frac{x-3}{3}\)
\(\Leftrightarrow\frac{26x-42}{24}=\frac{x-3}{3}\)
\(\Leftrightarrow78x-126=24x-72\)
Chuyển vế các kiểu
a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)
b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)
d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)
a) Ta có: 4x-20=0
⇔4x=20⇔4x=20
hay x=5
Vậy: S={5}
b) Ta có: 2x+x+12=02x+x+12=0
⇔3x+12=0⇔3x+12=0
⇔3x=−12⇔3x=−12
hay x=-4
\(a,3x\left(x-4\right)-2x+8=0\)
\(\Rightarrow3x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\4\end{cases}}}\)
Vậy \(x=\frac{2}{3}\)hoặc \(x=4\)
\(b,\left(3x-1\right)^2-\left(3x+2\right)\left(3x+1\right)=2\)
\(\Rightarrow9x^2-6x+1-\left(9x^2+3x+6x+1\right)-2=0\)
\(\Rightarrow9x^2-6x+1-9x^2-3x-6x-1-2=0\)
\(\Rightarrow-15x-2=0\)
\(\Rightarrow-15x=2\)
\(\Rightarrow x=\frac{-2}{15}\)
(1-2x)2-(3x-2)2=0
(1-2x-3x+2)(1-2x+3x-2)=0
(-5x+3)(x-1)=0
Th1: -5x+3=0 Th2: x-1=0
-5x=-3 x=1
x=3/5
vậy ...