số tự nhiên A có 4 chữ số chữ số hàng đơn vị lớn hơn 3 lần chữ số hàng trăm và chữ số hàng chục gấp 8 lần chữ số hàng nghìn.Xác định A nếu A chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d\
HT
Bài 1: Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d
Bài 2: Số đó chia hết cho 4 và 5 nên y=0
Vậy 6+x+1+4+y = 11+x chia hết cho 3
=> x=1, 4; 7
Vậy ta tìm được 3 số: 61140 ; 64140; 67140
Ta có:
cba - abc = 792
=> (100c + 10b + a) - (100a + 10b + c) = 792
=> 100c + 10b + a - 100a - 10b - c = 792
=> 99c - 99a = 792
=> 99.(c - a) = 792
=> c - a = 792 : 99
=> c - a = 8
Do c là chữ số => c = 8; a = 0 hoặc c = 9; a = 1
Mà c = 3b => c chia hết cho 3 => c = 9; a = 1
=> b = 3
Vậy số cần tìm là 139
Gọi số ban đầu là (abc), số mới là (cba) (a,b,c là stn nhỏ hơn 10 và a # 0)
Hiệu của chúng là :
(100c+10b+a)-(100a+10b+c)=
=100c+a-100a-c=99(c-a)
Theo đề bài :
99(c-a)=792 =>c-a=8 =>a=1; c=9
c=9 =>b=9/3=3
Vậy số tự nhiên ban đầu là 139.