K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Vì a/a+b > 0 nên a/a+b > a/a+b+c

Tương tự : b/b+c > b/a+b+c ; c/c+a > c/a+b+c

=> m > a+b+c/a+b+c = 1 (1)

Lại có : 0 < a/a+b < 1 nên a/a+b < a+c/a+b+c

Tương tự : b/b+c < b+a/a+b+c ; c/c+a < c+b/a+b+c

=> m < 2a+2b+2c/a+b+c = 2 (2)

Từ (1) và (2) => 1 < m < 2

=> m ko phải là số nguyên

k mk nha

18 tháng 4 2023

đb bị thiếu nhá bn, mik bổ sung ns sẽ thành: thỏa mãn a\(\le b\le c\)

6 tháng 5 2016

Dễ ý

Nếu a,b,c > 0

--- Chắc chắn là (a/a+b) + (b/b+c) + (c/c+a) khác 0 và khong phải là số nguyên rồi

10 tháng 11 2021

ngu à ví du6 1/3 +1/3 +1/3 = 0 đấy

\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

+)Ta thấy:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

                  \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                   \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Vậy M>1 (1)                 (Đề sai )

b)\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

+)Ta thấy:\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\) 

                  \(\frac{b}{a+c}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\)

                 \(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)

\(\Rightarrow M< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)

=>M<2 (2)

+)Từ (1) và (2)

=>M không phải là ssoos nguyên

Chúc bạn học tốt

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

$a+b+c \ge \sqrt{ab}+\sqrt{bc}+\sqrt{ca}$

$\Leftrightarrow 2a+2b+2c \ge 2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}$

$\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a \ge 0$

$\Leftrightarrow (\sqrt{a}-\sqrt{b})^2+(\sqrt{c}-\sqrt{b})^2+(\sqrt{a}-\sqrt{c})^2 \ge 0$ luôn đúng với $a,b,c \ge 0$

Dấu "=" xảy ra khi a=b=c

Ta có: \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)(luôn đúng với mọi a,b,c không âm)

20 tháng 8 2015

CM 1 < A < 2 

=> A không phải số nguển 

NV
23 tháng 1 2022

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\) 

\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)

\(\Rightarrow VT=\dfrac{y^2+z^2-x^2}{2x}+\dfrac{x^2+z^2-y^2}{2y}+\dfrac{x^2+y^2-z^2}{2z}\)

\(VT\ge\dfrac{\left(y+z\right)^2}{4x}+\dfrac{\left(x+z\right)^2}{4y}+\dfrac{\left(x+y\right)^2}{4z}-\dfrac{1}{2}\left(x+y+z\right)\)

\(VT\ge\dfrac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}-\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\left(x+y+z\right)\)

\(VT\ge\dfrac{1}{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

\(VT\ge\dfrac{1}{2}\left(\sqrt{\dfrac{1}{2}\left(a+b\right)^2}+\sqrt{\dfrac{1}{2}\left(b+c\right)^2}+\sqrt{\dfrac{1}{2}\left(c+a\right)^2}\right)\)

\(VT\ge\dfrac{a+b+c}{\sqrt{2}}\) (đpcm)

23 tháng 1 2022