K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

M = a / a+b = b / b+c = c / c+a = a + b + c / (a+b) + (b+c) + (c+a) = a+b+c / (a+a) + (b+b) + (c+c)

= a+b+c / 2a + 2b + 2c = a+b+c / 2(a+b+c) = 1/2 không phải là số nguyên => M không thuộc Z. 

9 tháng 2 2016

Phan Thanh Tịnh giải sai bét rồi, "+" chứ có phải "-" đâu mà áp dung dãy tỉ số bằng nhau đc

28 tháng 12 2015

ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)

ta lại có tương tự M<2

suy ra Mko ơphair số nguyên

6 tháng 5 2016

Dễ ý

Nếu a,b,c > 0

--- Chắc chắn là (a/a+b) + (b/b+c) + (c/c+a) khác 0 và khong phải là số nguyên rồi

10 tháng 11 2021

ngu à ví du6 1/3 +1/3 +1/3 = 0 đấy

7 tháng 11 2015

tương tự bài này :

https://vn.answers.yahoo.com/question/index?qid=20100728065830AAMp07Z

7 tháng 11 2015

Vì a+b<a+b+c=>a/(a+b)>a/(a+b+c)

Vì b+c<a+b+c=>b/b+c>b/(a+b+c)

Vì c+a<a+b+c=>c/c+a>c/(a+b+c)

=>a/a+b+b/(b+c)+c/c+a>a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1

=>a/a+b+b/b+c+c/c+a>1

=> điều phải chứng minh

Mình viết hơi khó đọc. bạn thông cảm nha !

 

26 tháng 10 2019

Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=> M > 1 (1)

Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{a+b}{a+b+c}\\\frac{c}{c+a}< \frac{b+c}{a+b+c}\end{cases}}\)

\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> M > 2 (2)

Từ (1) và (2)

=> 1 < M < 2

=> M không phải là số nguyên