Tìm X biết : {44 + 2010/1x2 + 2006/2x3 + 2000/3x4 +........+ 32/44x45} = 44/45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{43.44}+\frac{1}{44.45}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\)
\(A=\frac{1}{1}-\frac{1}{45}\)
\(A=\frac{44}{45}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}=\dfrac{2009}{2010}\)
a) \(A=1\times2+2\times3+...+2012\times2013\)
\(3\times A=1\times2\times3+2\times3\times\left(4-1\right)+...+2012\times2013\times\left(2014-2011\right)\)
\(=1\times2\times3+2\times3\times4-1\times2\times3+...+2012\times2013\times2014-2011\times2012\times2013\)
\(=2012\times2013\times2014\)
Suy ra \(A=\frac{2012\times2013\times2014}{3}=2719004728\).
b) \(B=1+1\times2+1\times2\times3+...+1\times2\times3\times...\times2015\)
Có \(1\times2\times3\times4\times5=120\)có chữ số tận cùng là \(0\).
Suy ra các số hạng sau cũng có chữ số tận cùng là \(0\).
Do đó chữ số tận cùng của \(B\)cũng là chữ số tận cùng của \(1+1\times2+1\times2\times3+1\times2\times3\times4=33\)
Vậy chữ số tận cùng của \(B\)là chữ số \(3\).
c) Các số lẻ khi nhân với số có chữ số tận cùng là \(5\)sẽ có chữ số tận cùng là \(5\).
Do đó \(C\)có chữ số tận cùng là chữ số tận cùng của \(C=3+5+5+...+5\)(\(1006\)số hạng \(5\))
Suy ra \(C\)có chữ số tận cùng là \(3\).
S= 2x(1/1x2+1/2x3+1/3x4+...........+1/2020x2021)
S=2x(1-1/2+1/2-1/3+1/3-...+1/2020-1/2021)
S=2x(1-1/2021)
S=2x2020/2021
S=4040/2021
2019/2010<3/2<4040/2021
=>2019/2010<S
S = 2 x (\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\)\(\frac{2}{2020\times2021}\))
= 2 x (\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\)\(\frac{1}{2020\times2021}\))
= 2 x ( \(1-\frac{1}{2021}\))
= \(2\times\frac{2020}{2021}\)
= \(\frac{4040}{2021}\)
= \(\frac{4042-2}{2021}\)
\(=2-\frac{2}{2021}\)
Ta có :
\(\frac{2019}{2010}=\frac{2020-1}{2010}=2-\frac{1}{2010}=2-\frac{2}{2020}\)
Ta thấy \(\frac{2}{2021}< \frac{2}{2020}\)
nên \(2-\frac{2}{2021}>2-\frac{2}{2020}\)
Vậy \(S\)\(>\frac{2019}{2010}\)
\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+....+\frac{5}{x.\left(x+1\right)}=\frac{44}{9}\)
\(5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}\right)=\frac{44}{9}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{44}{9}:5\)
\(1-\frac{1}{x+1}=\frac{44}{45}\)
\(\frac{1}{x+1}=1-\frac{44}{45}\)
\(\frac{1}{x+1}=\frac{1}{45}\)
=> x + 1 = 45
=> x = 45 - 1
=> x = 44
bài 2 tìm x
a,106- ( x+ 7) =9
x+7 = 106 - 9
x+7 = 107
x= 107 - 7
x=100
b, 2 x ( x+ 4) + 5 =65
2 x (x+4) = 65 - 5
2 x (x+4) = 60
x+4 = 60:2
x+4= 30
x= 30 - 4
x=26
c, (16x x -32) x 45=0
16 x X - 32 = 0: 45
16 x X - 32 =0
16 x X = 0 + 32
16 x X = 32
X= 32:16
X=2
d, x+4 x x = 100 : 5
X + 4 x X = 20
(1+4) x X = 20
5 x X = 20
X= 20:5
X=4
1.
c. \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
2.
a. \(45-5\left(y+1\right)=10\)
\(\Rightarrow5\left(y+1\right)=35\)
\(\Rightarrow y+1=7\)
\(\Rightarrow y=6\)
b. \(y:2+y:2=15\)
\(\Rightarrow\frac{1}{2}y+\frac{1}{2}y=15\)
\(\Rightarrow y=15\)
Bài 1 :
\(a,12,5\times32\times8\)
\(=\left(12,5\times8\right)\times32\)
\(=100\times32\)
\(=3200\)
\(b,20,9+20,9\times99\)
\(=20,9\times\left(1+99\right)\)
\(=20,9\times100\)
\(=2090\)
\(c,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{50}{50}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Bài 2 :
\(a,45-5\times\left(y+1\right)=10\)
\(5\times\left(y+1\right)=45-10\)
\(5\times\left(y+1\right)=35\)
\(y+1=35\div5\)
\(y+1=7\)
\(y=7-1\)
\(y=6\)
\(b,y\div2+y\div2=15\)
\(y\times\frac{1}{2}+y\times\frac{1}{2}=15\)
\(2\times\left(y\times\frac{1}{2}\right)=15\)
\(y=15\)
Học tốt
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(1-\frac{1}{x+1}=\frac{99}{100}\)
=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)
=> x+1 = 100
=> x = 100 - 1
=> x = 99
f*** you b****