Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}+1\)
=> A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{999}-\frac{1}{1000}+1\)
=> A = \(1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)
Ta có:
1/1x2=1-1/2
Cách này em có thể tự chứng minh bằng quy đồng mẫu.
Cứ như vậy....
Sau đó ta sẽ có tổng xuất hiện những số đối nhau,khử đi ta còn:
1-1/1000+1
=-1/1000.
Chúc em học tốt^^
Ta có:
1/1x2=1-1/2
Cách này em có thể tự chứng minh bằng quy đồng mẫu.
Cứ như vậy.
Sau đó ta sẽ có tổng xuất hiện những số đối nhau,khử đi ta còn:
=1-1/1000+1
=- 1/1000.
Chúc em học tốt^^
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}\)
\(=\frac{2010}{2011}\)
1/1x2 + 1/2x3 + 1/3x4 + .... + 1/2010x2011
=1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2010 - 1/2011
= 1/1 - 1/2011
=2010/2011
=1 - 1/2 + 1/2 - 1/3 + ...... +1/999 - 1/1000
=1-1/1000
=999/1000
=1 - 1/2 + 1/2 - 1/3 + ...... +1/999 - 1/1000
=1-1/1000
=999/1000
1 /1x2 + 1/2x3 + 1/3x4 + ...+ 1/999x1000 + 1
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/999 - 1/1000 + 1
= 1/1 - 1/1000 + 1
= 999/1000 + 1
= 1999/1000
= 1,999
a.1/7 + 2/7 + 3/7 + 4/7 + 5/7 + 6/7 = ( 1/7+6/7) + ( 2/7+5/7) + (3/7+4/7)
= 1 + 1 + 1
= 3
b. = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 ( loại bỏ các p/s giống nhau)
= 1/1 - 1/6
= 5/6
a. Các phân số bé hơn 1 có mẫu số bằng 7 là: \(\frac{1}{7};\frac{2}{7};\frac{3}{7};\frac{4}{7};\frac{5}{7};\frac{6}{7}\)
Ta có : \(\frac{1}{7}+\frac{2}{7}+\frac{3}{7}+\frac{4}{7}+\frac{5}{7}+\frac{6}{7}\)
\(=\frac{1+2+3+4+5+6}{7}=\frac{21}{7}=3\)
b. \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}\)
\(=\frac{5}{6}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{43.44}+\frac{1}{44.45}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\)
\(A=\frac{1}{1}-\frac{1}{45}\)
\(A=\frac{44}{45}\)
ko bt
ai ko pc dống mik tk mik nha