tìm x , y, z
a) 2x= 3y =5z và x -2y + 3z = 65
b) x/5 =y/3 ; y/7 = z/4 và x + y - z = 132
c) x/4 =y/7 và x . y = 112
có ai ko giúp mk bài này với mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
1. Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)=> \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{77}{-7}=-11\)
=> \(\hept{\begin{cases}\frac{x}{2}=-11\\\frac{y}{3}=-11\\\frac{z}{5}=-11\end{cases}}\)=> \(\hept{\begin{cases}x=-22\\y=-33\\z=-55\end{cases}}\)
2. Ta có : \(2x=3y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{1}{2}-\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{11}{30}}=-90\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=-90\\\frac{y}{\frac{1}{3}}=-90\\\frac{z}{\frac{1}{5}}=-90\end{cases}}\)=> \(\hept{\begin{cases}x=-45\\y=-30\\z=-18\end{cases}}\)
a) Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y+3z}{15-2.10+3.6}=\frac{65}{13}=5\)
\(\Rightarrow x=5.15=75\)
\(y=5.10=50\)
\(z=5.6=30\)
b) Ta có: \(\frac{x}{5}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{35+21-12}=\frac{132}{44}=3\)
\(\Rightarrow x=3.35=105\)
\(y=3.21=63\)
\(z=3.12=36\)
c) Gọi \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow x=4k;y=7k\)
\(\Rightarrow x.y=4k.7k=28k^2=112\)
\(\Rightarrow k^2=112:28=4\)
\(\Rightarrow k=\pm2\)
\(\Rightarrow x=\pm2.4=\pm8\)
\(y=\pm2.7=\pm14\)