Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{10}=\frac{x}{8}-\frac{2y}{24}+\frac{z}{10}=\frac{x-2y+z}{8-24+10}=\frac{27}{-6}=\frac{9}{-2}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{9}{-2}\Rightarrow x=-36\\\frac{y}{12}=\frac{9}{-2}\Rightarrow y=-54\\\frac{z}{10}=\frac{9}{-2}\Rightarrow z=-45\end{cases}}\)
Vậy ....
b) Ta có : \(5x=9y\Rightarrow x=\frac{9y}{5}\)
Thay \(x=\frac{9y}{5}\)vào biểu thức \(2x-3y=30\);ta được :
\(\frac{2.9y}{5}-3y=30\Rightarrow18y-15y=150\Rightarrow3y=150\Rightarrow y=50\)
Với \(y=50\Rightarrow x=\frac{9.50}{5}=90\)
Vậy .....
c) Ta có : \(x\div y\div z=3\div4\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2-2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
Do đó : \(\hept{\begin{cases}\frac{x}{3}=4\Rightarrow x=12\\\frac{y}{4}=4\Rightarrow y=16\\\frac{z}{5}=4\Rightarrow z=20\end{cases}}\)
Vậy ...
d) Ta có : \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)
\(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)
Thay (1) và (2) vào biểu thức \(3x-7y+5z=-30\);ta được :
\(\frac{3.3y}{2}-7y+\frac{5.5y}{7}=-30\)
\(\Leftrightarrow63y-98y+50y=-420\)
\(\Leftrightarrow15y=-420\Rightarrow y=-28\)
Với \(y=-28\Rightarrow x=\frac{3.-28}{2}=-42;z=\frac{5.-28}{7}=-20\)
e) Ta có : \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{3}=2\Rightarrow y=6\)
Với \(k=-2\Rightarrow\frac{x}{7}=-2\Rightarrow x=-14;\frac{y}{3}=-2\Rightarrow y=-6\)
Vậy ...
a) ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\frac{y}{6}=\frac{2y}{12}\)
\(\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}\) (1)
áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}=\frac{x-2y+z}{4-12+5}=\frac{27}{-3}=-9\) (2)
từ (1) và (2) suy ra:
\(\frac{x}{4}=-9\Rightarrow x=-9.4=-36\)
..................................y;z bn tự tính ha!^^
b) ta có:
\(5x=9y\Rightarrow\frac{x}{9}=\frac{y}{5}\)
\(\frac{x}{9}=\frac{2x}{18};\frac{y}{5}=\frac{3y}{15}\)
thui làm đến bước này thì bn tự làm nốt nha! làm câu d cũng tương tự lun! (câu c mk ko pik làm đâu!^^)
e)
ta có:
3x=7y \(\Rightarrow\frac{x}{7}=\frac{y}{3}\)
đặt \(\frac{x}{7}=\frac{y}{3}=k\left(k\in Z\right)\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)
vì xy = 84 nên : 7k.3k = \(84\)
\(\Rightarrow21k^2=84\)
\(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
với k = 2 thì x =........... ; y=................
với k=-2 thì x=........ ; y=....................
ự làm nốt ha!the end!^^
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
Câu c là dấu " . " là dấu nhân
a) \(x:y:z=3:5:\left(-2\right)\) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)=> \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng TC dãy tỉ số bằng nhau ta có ;
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\hept{\begin{cases}\frac{x}{3}=31\\\frac{y}{5}=31\\\frac{z}{-2}=31\end{cases}}\Rightarrow\hept{\begin{cases}x=93\\y=155\\z=-62\end{cases}}\)
b) Ta có : \(\hept{\begin{cases}2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\\5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\end{cases}}\)
=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)
=> \(\hept{\begin{cases}\frac{x}{21}=-2\\\frac{y}{14}=-2\\\frac{z}{10}=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=-42\\y=-28\\z=-20\end{cases}}\)
c) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
=> \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
=> xyz = 2k.3k.5k
=> 30k3 = 810
=> k3 = 27
=> k = 3
Vậy x = 6,y = 9,z = 15
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)
\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)
⇒\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)⇒\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
⇒x=42,y=28,z=20
\(\dfrac{x}{3}=\dfrac{y}{2}\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}\)
\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)⇒\(\dfrac{x}{15}=\dfrac{2y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)
⇒x=48,y=32,z=336/5
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)