K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

Đặt \(AB=a;AC=b;BC=a\) . Ta có : \(p=\dfrac{a+b+c}{2}=18\)

S = \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=54\) \(=pr=18r\Rightarrow r=3\)  (cm) 

20 tháng 4 2018

Ta có: AH ⊥ BC ⇒ HB = HC = BC/2 = 24/2 = 12(cm)

Áp dụng định lí Pitago vào tam giác vuông ACH ta có:

A C 2 = A H 2 + H C 2

Suy ra: A H 2 = A C 2 - H C 2 = 20 2 - 12 2  = 400 - 144 = 256

AH = 16 (cm)

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

A C 2  = AH.AD ⇒ AD =  A C 2 /AH =  20 2 /16 = 25 (cm)

Vậy bán kính của đường tròn (O) là: R = AD/2 = 25/2 = 12,5 (cm)

13 tháng 3 2016

BC và AK cắt BC tại H.Ta có HB=HC (AK là trung trực của BC) 
=>HC=BC/2. 
AH=√(AC²-CH²); 
∆ACH~∆COH (tam giác vuông chung góc nhọn tại O) 
=>AH/AC=HC/CO=>CO=AC.HC/AH. 
=20.12/√(20²-12²)=20.12/16=15.

13 tháng 3 2016

 Gọi AH, BK là hai đường cao, có AH = 10; BK = 12 
thấy hai tgiác CAH và CBK đồng dạng => CA/AH = CB/BK 
=> CA/10= 2CH/12 => CA = 2,6.CH (1) 
mặt khác áp dụng pitago cho tgiac vuông HAC: 
CA² = CH² + AH² (2) 

thay (1) vào (2): 2,6².CH² = CH² + 102 
=> (2,6² - 1)CH² = 102=> CH = 10 /2,4 = 6,5 
=> BC = 2CH = 13 cm 

4 tháng 5 2019

Chọn đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền BC, bán kính là R = BC/2

 

Theo định lý Pytago ta có Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án nên bán kính R = 25/2

4 tháng 4 2020

Từ giả thiết ta có: \(\hept{\begin{cases}AB=AC=a\\BC=a\sqrt{2}\end{cases}}\)

\(\Rightarrow p=\frac{AB+BC+AC}{2}=a\left(\frac{2+\sqrt{2}}{2}\right)\)

\(\Rightarrow r=\frac{S}{p}=\frac{2}{2+\sqrt{2}}\)

24 tháng 3 2021

undefined