Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH ( H thuộc BC)
Theo hệ thức giữa cạnh và đường cao trong tam giác vuông tính được \(\frac{1}{AH^2}\) =\(\frac{1}{AB^2}\) +\(\frac{1}{AC^2}\) (chỗ này bn tự thay số ở đề bài để tính nha)=>AH=12(=R)
=> đường thắng BC là tiếp tuyến của đường tròn tâm A, bán kính 12cm
chúc bn học tốt
a) Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh BC
nên AH là đường trung tuyến ứng với cạnh BC
Ta có: AB=AC
nên A nằm trên đường trung trực của BC\(\left(1\right)\)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC\(\left(2\right)\)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng
\(\Leftrightarrow A,O,H,D\) thẳng hàng
hay AD là đường kính của \(\left(O\right)\)
Đặt \(AB=a;AC=b;BC=a\) . Ta có : \(p=\dfrac{a+b+c}{2}=18\)
S = \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=54\) \(=pr=18r\Rightarrow r=3\) (cm)