tìm mọi số nguyên n thỏa mãn \(\left(m+5\right)^2=\left(4\left(n-2\right)\right)^3\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm thử theo cách cổ truyền vậy -.-
Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)
\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)
\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)
Coi pt trên là pt bậc 2 ẩn n
Ta có : \(\Delta=4m^4+4m^2+32m-63\)
Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương
Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)
Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)
Khi đó \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)
Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)
Nên điều giả sử là sai .
Tức là\(m\le2\)
Mà \(m\inℕ^∗\)
\(\Rightarrow m\in\left\{1;2\right\}\)
*Với m = 1 thì pt ban đầu trở thành
\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)
\(\Leftrightarrow n^2+n+1=-5\)
\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)
Pt vô nghiệm
*Với m = 2 thì pt ban đầu trở thành
\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)
\(\Leftrightarrow n^2+n+1=21\)
\(\Leftrightarrow n^2+n-20=0\)
\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)
\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)
Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)
Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC , ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC
CMR: a,P ; I ; Q thẳng hàng
b, đường thẳng PQ đi qua trung điểm HK
- Với \(m=\left\{-2;-1;0\right\}\Rightarrow n=0\)
- Với \(m< -2\Rightarrow m\left(m+1\right)\left(m+2\right)< 0\) (ktm)
- Với \(m>0\):
\(m\left(m+1\right)\left(m+2\right)=\left(m+1\right)\left(m^2+2m\right)\)
Gọi \(d=ƯC\left(m+1;m^2+2m\right)\)
\(\Rightarrow\left(m+1\right)\left(m+1\right)-\left(m^2+2m\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Mà \(\left(m+1\right)\left(m^2+2m\right)=n^2\Rightarrow\left\{{}\begin{matrix}m+1=a^2\\m^2+2m=b^2\end{matrix}\right.\)
Từ \(m^2+2m=b^2\Rightarrow\left(m+1\right)^2-b^2=1\)
\(\Rightarrow\left(m+1-b\right)\left(m+1+b\right)=1\)
Tới đây chắc dễ rồi
câu 2:
a) Trước tiên ta chứng minh f đơn ánh. Thật vậy nếu f (n1) = f (n2) thì
f (f(n1) + m) = f (f(n2) + m)
→n1 + f(m + 2003) = n2 + f(m + 2003) → n1 = n2
b) Thay m = f(1) ta có
f (f(n) + f(1)) = n + f (f(1) + 2003)
= n + 1 + f(2003 + 2003)
= f (f(n + 1) + 2003)
Vì f đơn ánh nên f(n)+f(1) = f(n+1)+2003 hay f(n+1) = f(n)+f(1)−2003. Điều này dẫn đến
f(n + 1) − f(n) = f(1) − 2003, tức f(n) có dạng như một cấp số cộng, với công sai là f(1) − 2003,
số hạng đầu tiên là f(1). Vậy f(n) có dạng f(n) = f(1) + (n − 1) (f(1) − 2003), tức f(n) = an + b.
Thay vào quan hệ hàm ta được f(n) = n + 2003, ∀n ∈ Z
+.
a(m+p) = 5(m+n) => \(\frac{m+n}{m+p}=\frac{a}{5}\)
từ đẳng thức thứ 2 => 25.(p - n)(2m+n+p) = 21(m+p)2 ==> 25.(m+ p- m - n)(m+n+ m + p) = 21(m+p)2
Chia cả 2 vế chp (m+p)2 ta được
\(25.\left(\frac{m+p}{m+p}-\frac{m+n}{m+p}\right)\left(\frac{m+n}{m+p}+\frac{m+p}{m+p}\right)=21\)
thay (*) vào ta đc
\(\Rightarrow25.\left(1-\frac{a}{5}\right)\left(\frac{a}{5}+1\right)=21\)\(\Rightarrow25.\left(1-\left(\frac{a}{5}\right)^2\right)=21\)
\(\Rightarrow25.\left(\frac{25-a^2}{25}\right)=21\Rightarrow25-a^2=21\Leftrightarrow a^2=4\Rightarrow a=2;-2\)
vậy ....