Chứng minh rằng tổng bình phương của 2 số lẻ bất kỳ không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a và b lẻ
=> a=2k+1
b=2m+1
(k là số tự nhiên)
=>a2+b2=(2k+1)(2k+)+(2m+2)(2m+1)
=4k2+4k+1+4m2+4m+1
=4(k2+k+m2+m) + 2
mà số chính phương chia 4 chỉ có số dư 0 hoặc 1
=> a2+b2 không phải số chính phương
=>đpcm
Gọi hai số lẻ bất kỳ là 2k+1 và 2a+1
\(\left(2k+1\right)^2+\left(2a+1\right)^2\)
\(=4k^2+4k+1+4a^2+4a+1\)
\(=4k^2+4a^2+4k+4a+2\) không là số chính phương
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2 = 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko chính phương
=> ĐPCM
k mk nha
Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương
Gọi 2 số lẻ bất kì là a và b
a và b lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m N).
=> a2 + b2 = (2k + 1)2 + ( 2m + 1)2 = 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4 (k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương
3)+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
2)
a
v
à
b
l
ẻ
n
ê
n
a
=
2k+1,
b
=
2m+1
(V
ớ
i
k,
m
N)
a
2
+
b
2
=
(2k+1)
2
+
(2m+1)
2
=
4k
2
+
4k
+
1
+
4m
2
+
4m
+
1
=
4(k
2
+
k
+
m
2
+
m)
+
2
=
4t
+
2
(V
ớ
i
t
N)
Kh
ô
ng
c
ó
s
ố
ch
í
nh
ph
ươ
ng
n
à
o
c
ó
d
ạ
ng
4t
+
2
(t
N)
do
đó
a
2
+
b
2
kh
ô
ng
th
ể
l
à
s
ố
ch
í
nh
ph
ươ
ng
Trung Nguyen
Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương
Binh phuong cua 1 so le dong du 1 (mod 4)
Suy ra tong binh phuong cua 2 so le bat ki dong du 2 (mod 4)
Ma scp dong du 0 hoac 1 (mod 4)
Vay tong binh phuong cua 2 so le bat ky khong phai la scp